贝叶斯新闻分类(二)

该博客介绍了如何详细地将新闻分类过程分为两步:首先生成词频向量,然后转换为TF-IDF向量。通过使用TfidfVectorizer,实现了MultinomialNB分类器的训练。
摘要由CSDN通过智能技术生成

前面(一)中用一种简化的方式是直接使用TfidfVectorizer来生成TF-IDF向量,这里我们按照一般的方式将生成TF-IDF向量分成两个步骤:1.生成词频向量. 2.生成TF-IDF向量。最后我们开始训练我们的MultinomialNB分类器。
TfidfVectorizer 将原始文档的集合转换为tf - idf特性的矩阵 ,

相当于CountVectorizer配合TfidfTransformer使用的效果

TfidfVectorizer类将CountVectorizer和TfdfTransformer类封装在一起

下面是1.生成词频向量. 2.生成TF-IDF向量。的代码

#划分训练集和测试集
from sklearn.model_selection import train_test_split
df_train = pd.read_csv('news_clean.csv')
X_train, X_test, y_train, y_test = train_test_split(df_train['contents_clean'].values,df_train['label'].values,random_state=1)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB

count_vect = CountVectorizer(analyzer='word',max_features=1000,lowercase=False)
X_train_counts = count_vect.fit_transform(X_train)
# print(X_tr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值