1756:八皇后——回溯

描述

会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

输入

第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)

输出

输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。

样例输入

2
1
92

样例输出

15863724
84136275

思路

这就比原来的八皇后问题需要多存储一个结果值,然后排序就可以得到结果。i+j是次对角线上的占领情况,i-j+7是主对角线上的占领情况,每次回溯结束需要将改变的变量复原。

#include <iostream>
#include <algorithm>
using namespace std;

int vis[81];
int num[100],lie[9],l[20],r[20];
int all=0;


void hh(int i,int sum){
	if(i==9){
		num[all++]=sum;
	}
	for(int j=1;j<=8;j++){
		if(lie[j]==1||l[i+j]==1||r[i-j+7]==1) continue;
		sum=sum*10+j;
		lie[j]=1;
		l[i+j]=1;
		r[i-j+7]=1;
		hh(i+1,sum);
		sum/=10;
		lie[j]=0;
		l[i+j]=0;
		r[i-j+7]=0;
	}
}

int main(){
	int n;
	cin>>n;
	hh(1,0);
	sort(num,num+92);
	while(n--){
		int m;
		cin>>m;
		cout << num[m-1]<<endl;
	}
	return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值