描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入
2 1 92
样例输出
15863724 84136275
思路
这就比原来的八皇后问题需要多存储一个结果值,然后排序就可以得到结果。i+j是次对角线上的占领情况,i-j+7是主对角线上的占领情况,每次回溯结束需要将改变的变量复原。
#include <iostream>
#include <algorithm>
using namespace std;
int vis[81];
int num[100],lie[9],l[20],r[20];
int all=0;
void hh(int i,int sum){
if(i==9){
num[all++]=sum;
}
for(int j=1;j<=8;j++){
if(lie[j]==1||l[i+j]==1||r[i-j+7]==1) continue;
sum=sum*10+j;
lie[j]=1;
l[i+j]=1;
r[i-j+7]=1;
hh(i+1,sum);
sum/=10;
lie[j]=0;
l[i+j]=0;
r[i-j+7]=0;
}
}
int main(){
int n;
cin>>n;
hh(1,0);
sort(num,num+92);
while(n--){
int m;
cin>>m;
cout << num[m-1]<<endl;
}
return 0;
}