2989:糖果——动态规划

描述

由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。在这一天,Dzx可以从糖果公司的N件产品中任意选择若干件带回家享用。糖果公司的N件产品每件都包含数量不同的糖果。Dzx希望他选择的产品包含的糖果总数是K的整数倍,这样他才能平均地将糖果分给帮助他维护世界和平的伙伴们。当然,在满足这一条件的基础上,糖果总数越多越好。Dzx最多能带走多少糖果呢?
注意:Dzx只能将糖果公司的产品整件带走。

输入

第一行包含两个整数N(1<=N<=100)和K(1<=K<=100)
以下N行每行1个整数,表示糖果公司该件产品中包含的糖果数目,不超过1000000

输出

符合要求的最多能达到的糖果总数,如果不能达到K的倍数这一要求,输出0

样例输入

5 7
1
2
3
4
5

样例输出

14

思路

一开始想用背包的方式解决的,但是因为数组大小有限不能通过所有的样例,所以还是屈服了。

看了看网上的方法,是用模k的余数来缩小数组大小的。

 

#include<bits/stdc++.h>
using namespace std;

int a[105],dp[105][105];

int main(){
	int n,k;
	cin>>n>>k;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	for(int i=1;i<=n;i++){
		for(int p=0;p<k;p++){
			dp[i][p]=dp[i-1][p];
		}
		for(int j=0;j<k;j++){
			if(dp[i-1][j]+a[i]>dp[i][(dp[i-1][j]+a[i])%k]){
				dp[i][(dp[i-1][j]+a[i])%k]=dp[i-1][j]+a[i];
			}
		}
	}
	cout << dp[n][0] <<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值