描述
由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。在这一天,Dzx可以从糖果公司的N件产品中任意选择若干件带回家享用。糖果公司的N件产品每件都包含数量不同的糖果。Dzx希望他选择的产品包含的糖果总数是K的整数倍,这样他才能平均地将糖果分给帮助他维护世界和平的伙伴们。当然,在满足这一条件的基础上,糖果总数越多越好。Dzx最多能带走多少糖果呢?
注意:Dzx只能将糖果公司的产品整件带走。
输入
第一行包含两个整数N(1<=N<=100)和K(1<=K<=100)
以下N行每行1个整数,表示糖果公司该件产品中包含的糖果数目,不超过1000000
输出
符合要求的最多能达到的糖果总数,如果不能达到K的倍数这一要求,输出0
样例输入
5 7
1
2
3
4
5
样例输出
14
思路
一开始想用背包的方式解决的,但是因为数组大小有限不能通过所有的样例,所以还是屈服了。
看了看网上的方法,是用模k的余数来缩小数组大小的。
#include<bits/stdc++.h>
using namespace std;
int a[105],dp[105][105];
int main(){
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=n;i++){
for(int p=0;p<k;p++){
dp[i][p]=dp[i-1][p];
}
for(int j=0;j<k;j++){
if(dp[i-1][j]+a[i]>dp[i][(dp[i-1][j]+a[i])%k]){
dp[i][(dp[i-1][j]+a[i])%k]=dp[i-1][j]+a[i];
}
}
}
cout << dp[n][0] <<endl;
return 0;
}