Python大数据正态分布之箱型图上下限值计算

本文介绍了正态分布和箱型图的概念,并展示了如何使用Python计算大数据量的箱型图上下边缘值。通过分析公司网页指标数据,确定正常情况应符合正态分布,异常时则触发报警。文中提供了一段Python代码,用于读取Excel数据,计算四分位数和上下边缘值,以进行数据异常检测。
摘要由CSDN通过智能技术生成

欢迎关注【无量测试之道】公众号,回复【领取资源】,
Python编程学习资源干货、
Python+Appium框架APP的UI自动化、
Python+Selenium框架Web的UI自动化、
Python+Unittest框架API自动化、

资源和代码 免费送啦~
文章下方有公众号二维码,可直接微信扫一扫关注即可。

一、在分享今天的内容之前,我们先来简单了解下关于数学中的部分统计学及概率的知识。

首先,正态分布是最重要的一种概率分布,正态分布(Normal distribution),也称高斯分布(Gaussian distribution),具体详细的介绍可自行网上查阅资料;

其次,如下图中所示的:分位数、中位数、众数等;

再者,就是今天要重点介绍的箱型图,如下图所示

待会要分享的Python程序就是对箱型图中上下边缘值的计算实现。

通过下图所示,可初步了解下正态分布图的分布状况。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wu_Candy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值