异常值检测的方法有很多,通过数据分布图型寻找异常值、算法模型(聚类、随机森林等),我这里就是记录一下工作中做初步的数据探查时用到的箱型图检测和正态分布检测,这两种都是根据数据分布情况来识别异常值的,没有结合到业务的层面,在做初步的探查时还是高效且适用的。因为正态分布3σ的异常值检测需要数据符合正态分布,现实情况中大部分数据都是杂乱无章的,因此重点使用的是箱型图检测。
1.箱型图的优势
(1)准确稳定地描绘出数据的离散分布情况且不需要服从特定的分布形式
箱形图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;
(2)异常值不会影响四分位数的确定
箱形图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱形图识别异常值的结果比较客观。
2.箱型图的示意及符号说明