Python:异常值检测箱型图(附:正态分布3σ)

本文介绍了使用箱型图进行异常值检测的方法,强调了箱型图在数据分布检测中的优势,如不受数据分布形式限制且异常值不影响四分位数的确定。还提到了Python实现异常值检测的代码,并提及了正态分布3σ原则,但指出由于现实数据的复杂性,更倾向于使用箱型图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        异常值检测的方法有很多,通过数据分布图型寻找异常值、算法模型(聚类、随机森林等),我这里就是记录一下工作中做初步的数据探查时用到的箱型图检测和正态分布检测,这两种都是根据数据分布情况来识别异常值的,没有结合到业务的层面,在做初步的探查时还是高效且适用的。因为正态分布3σ的异常值检测需要数据符合正态分布,现实情况中大部分数据都是杂乱无章的,因此重点使用的是箱型图检测。

1.箱型图的优势

(1)准确稳定地描绘出数据的离散分布情况且不需要服从特定的分布形式

箱形图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;

(2)异常值不会影响四分位数的确定

箱形图判断异常值的标准以四分位数四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱形图识别异常值的结果比较客观。

2.箱型图的示意及符号说明

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值