L518零钱兑换 II

  1. 零钱兑换 II
    给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:

输入: amount = 10, coins = [10]
输出: 1

注意:

你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数
1.0-1背包方法进行变形

class Solution {
    public int change(int amount, int[] coins) {
        int len = coins.length;
        if(len == 0){
            if(amount == 0){//这时还是有解的
                return 1;
            }else return 0;
        }

        int[][] dp = new int[len][amount + 1];
        //设置一个可以参考的变量,其中dp[i][j]表示前i个元素,组合为j的个数
        dp[0][0] = 1;

        for(int i = coins[0]; i <= amount; i += coins[0]){
            dp[0][i] = 1;//初始化第一行
        }
        
        for(int i = 1; i < len; i++){//注意从1开始的
            for(int j = 0; j <= amount; j++){//其实是0-1背包的变形
                for(int k = 0; k * coins[i] <= j; k++){
                    dp[i][j] += dp[i - 1][j - k*coins[i]];//这里已经包含了dp[i-1][j],dp[i - 1][j - coins[i]]
                    //注意是dp[i - 1]
                }
            }
        }
        return dp[len - 1][amount];
        
    }
}

2.「滚动数组」技巧代码, 就是用两行二维数组来存放结果

class Solution {
    public int change(int amount, int[] coins) {
        int len = coins.length;
        if(len == 0){
            if(amount == 0){//这时还是有解的
                return 1;
            }else return 0;
        }

        int[][] dp = new int[2][amount + 1];
        //设置一个可以参考的变量,其中dp[i][j]表示前i个元素,组合为j的个数
        dp[0][0] = 1;

        for(int i = coins[0]; i <= amount; i += coins[0]){
            dp[0][i] = 1;//初始化第一行
        }

        for(int i = 1; i < len; i++){
            Arrays.fill(dp[i&1], 0);//二维数组应当制定维数,也就是将马上需要填充的置为0
            //清空的原因是:当前的每一个值不一定会被重置, k * coins[i] <= j要满足这个条件方可
            //结果下次运算就会引用错误的值
            for(int j = 0; j <= amount; j++){//其实是0-1背包的变形
                for(int k = 0; k * coins[i] <= j; k++){
                    dp[i&1][j] += dp[(i - 1) & 1][j - k*coins[i]];//这里已经包含了dp[i-1][j],dp[i - 1][j - coins[i]]
                }
            }
        }
        return dp[(len - 1) & 1][amount];//z找到对应的那一维数组

    }
}

3.找到准确的递推表达式
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i]]

class Solution {
    public int change(int amount, int[] coins) {
        int len = coins.length;
        if(len == 0){
            if(amount == 0) return 1;
            else return 0;
        }

        int[][] dp = new int[len][amount + 1];
        dp[0][0] = 1;
        for(int i = coins[0]; i <= amount; i += coins[0]){
            dp[0][i] = 1;
        }

        for(int i = 1; i < len; i++){
            for(int j = 0; j <= amount; j++){
                dp[i][j] = dp[i - 1][j];//注意必须得提前赋值,因为下面要参考,不然出错
                if(j - coins[i] >= 0){
                    dp[i][j] += dp[i][j - coins[i]];
                    //注意都是dp[i][j]不是dp[i - 1][j]
                }
            }
        }

        return dp[len - 1][amount];

    }
}

一定要自己独立去写!宁愿速度慢点,也要好好写

4.压缩空间,自己要独立把表格画出来,就会发现其实每次参考的数据都是上面一行,还有左边的本行,所以第二次循环按顺序去写就可以了

class Solution {
    public int change(int amount, int[] coins) {
        int len = coins.length;
        if(len == 0){
            if(amount == 0) return 1;
            else return 0;
        }

        int[] dp = new int[amount + 1];
        dp[0] = 1;//这个已经有了参照,其实下面的循环可以不用写,双重循环i只需要从0开始即可
        for(int i = coins[0]; i <= amount; i += coins[0]){
            dp[i] = 1;
        }

        for(int i = 1; i < len; i++){
            for(int j = coins[i]; j <= amount; j++){
                dp[j] += dp[j - coins[i]];//不用再像上面的先赋值了,因为本身就没有发生变化
            }
        }

        return dp[amount];

    }
}

可以从0开始循环:

class Solution {
    public int change(int amount, int[] coins) {
        int len = coins.length;
        if(len == 0){
            if(amount == 0) return 1;
            else return 0;
        }

        int[] dp = new int[amount + 1];
        dp[0] = 1;
        

        for(int i = 0; i < len; i++){
            for(int j = coins[i]; j <= amount; j++){
                dp[j] += dp[j - coins[i]];//不用再像上面的先赋值了,因为本身就没有发生变化
            }
        }

        return dp[amount];

    }
}

5.回溯法,因为不存在重复的元素,这其实是「力扣」第 39 题:“组合总和”,于是可以尝试使用回溯搜索的写法计算出所有的组合数

class Solution {
    int res;
    public int change(int amount, int[] coins) {
        int len = coins.length;
        if(len == 0){
            if(amount == 0) return 1;
            else return 0;
        }
        Arrays.sort(coins);//不确定
        res = 0;
        dfs(amount, coins, 0);
        return res;

    }
    void dfs(int remain, int[] coins, int index){
        if(remain == 0){
            res++;
            return;
        }

        for(int i = index; i < coins.length; i++){
            if(remain < coins[i]) break;//这里及时剪枝,就意味数组要有序,使用i还是index结果似乎都是超时
            dfs(remain - coins[i], coins, i);//注意与LeetCode39区别,因为没有集合存储,但是其实质还是回溯法
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值