Coin Change 零钱兑换

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3 
解释: 11 = 5 + 5 + 1

示例 2:

输入: coins = [2], amount = 3
输出: -1

说明:
你可以认为每种硬币的数量是无限的。

思路:这道题是完全背包问题的变种,采用动态规划维护一个二维数组dp,dp[i][j]表示从第一个元素到第i个元素累计总金额为j时的最少硬币数量,递推公式为:

dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i]]+1);   
         =dp[i-1][j]

解释为:

情况一:如果不考虑当前元素,前i-1个元素就已经累加了总金额为j,那么对应有硬币数dp[i-1][j],所以硬币数没有增加,依然为dp[i-1][j]

情况二:如果考虑当前元素,前i个元素累加了总金额为j-coins[i],那么再加上第i个硬币的面值coins[i],就刚好是总金额j,满足要求,这里为什么是dp[i][j-coins[i]]而不是dp[i-1][j-coins[i]]是因为这里的硬币是可以重复选的,类比背包是可以无限拿的,所以要考虑当前第i个元素已经选过的情况下如果再选一个硬币的情况(这就是完全背包的通项公式,如果还不了解自行查阅完全背包通项递推式),由于硬币数加了coins[i]本身,所以+1,于是我们在两个中选取一个较小值。

二维数组的参考代码如下:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
	sort(coins.begin(), coins.end(), greater<int>());
	int res = -1;
	int **dp = new int *[coins.size() + 1];
	int m = coins.size()+1;
	int n = amount + 1;
	for (int i = 0; i < m; i++) {
		dp[i] = new int[n];
	}
	for (int i = 1; i < n; i++) {
		dp[0][i] = amount+1;
	}
	for (int i = 0; i < m; i++) {
		dp[i][0] = 0;
	}
	for (int i = 1; i < m; i++) {
		for (int j = 1; j < n; j++) {
			if ((j - coins[i - 1]) >= 0) {
				dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i - 1]]+1);
			}
            else{
                dp[i][j]=dp[i-1][j];
            }
		}
	}
	res = dp[m - 1][amount]==(amount+1)?-1:dp[m - 1][amount];
	for (int i = 0; i < m; i++) {
		delete[] dp[i];
	}
	delete[] dp;
	return res;        
    }
};

我们把空间复杂度降为一维,递推公式为:

dp[i] = min(dp[i], dp[i - coins[j]] + 1);

意思是当零钱为i元需要的最少硬币数等于第i元减去硬币中所有出现的可能的小于i元的硬币的出现次数加1。这里的j从0循环到coins.size()-1,这里dp需要初始化为一个很大的数,但是不能是INT_MAX,否则+1操作会发生数值溢出。

参考代码:

    int coinChange(vector<int>& coins, int amount) {
	int *dp = new int[amount + 1,amount+1];
        for(int i=1;i<=amount;i++){
            dp[i]=(amount+1);
        }
	dp[0] = 0;
	int res = -1;
	for (int i = 1; i <= amount; i++) {
		for (int j = 0; j < coins.size(); j++) {
			if (i -coins[j]>=0) {
				dp[i] = min(dp[i], dp[i - coins[j]] + 1);
			}
		}
	}
        res = (dp[amount] == (amount + 1))? -1 : dp[amount];  
	delete[] dp;
    return res;
    }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值