给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1
。
示例 1:
输入: coins =[1, 2, 5]
, amount =11
输出:3
解释: 11 = 5 + 5 + 1
示例 2:
输入: coins =[2]
, amount =3
输出: -1
说明:
你可以认为每种硬币的数量是无限的。
思路:这道题是完全背包问题的变种,采用动态规划维护一个二维数组dp,dp[i][j]表示从第一个元素到第i个元素累计总金额为j时的最少硬币数量,递推公式为:
dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i]]+1);
=dp[i-1][j]
解释为:
情况一:如果不考虑当前元素,前i-1个元素就已经累加了总金额为j,那么对应有硬币数dp[i-1][j],所以硬币数没有增加,依然为dp[i-1][j]
情况二:如果考虑当前元素,前i个元素累加了总金额为j-coins[i],那么再加上第i个硬币的面值coins[i],就刚好是总金额j,满足要求,这里为什么是dp[i][j-coins[i]]而不是dp[i-1][j-coins[i]]是因为这里的硬币是可以重复选的,类比背包是可以无限拿的,所以要考虑当前第i个元素已经选过的情况下如果再选一个硬币的情况(这就是完全背包的通项公式,如果还不了解自行查阅完全背包通项递推式),由于硬币数加了coins[i]本身,所以+1,于是我们在两个中选取一个较小值。
二维数组的参考代码如下:
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
sort(coins.begin(), coins.end(), greater<int>());
int res = -1;
int **dp = new int *[coins.size() + 1];
int m = coins.size()+1;
int n = amount + 1;
for (int i = 0; i < m; i++) {
dp[i] = new int[n];
}
for (int i = 1; i < n; i++) {
dp[0][i] = amount+1;
}
for (int i = 0; i < m; i++) {
dp[i][0] = 0;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if ((j - coins[i - 1]) >= 0) {
dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i - 1]]+1);
}
else{
dp[i][j]=dp[i-1][j];
}
}
}
res = dp[m - 1][amount]==(amount+1)?-1:dp[m - 1][amount];
for (int i = 0; i < m; i++) {
delete[] dp[i];
}
delete[] dp;
return res;
}
};
我们把空间复杂度降为一维,递推公式为:
dp[i] = min(dp[i], dp[i - coins[j]] + 1);
意思是当零钱为i元需要的最少硬币数等于第i元减去硬币中所有出现的可能的小于i元的硬币的出现次数加1。这里的j从0循环到coins.size()-1,这里dp需要初始化为一个很大的数,但是不能是INT_MAX,否则+1操作会发生数值溢出。
参考代码:
int coinChange(vector<int>& coins, int amount) {
int *dp = new int[amount + 1,amount+1];
for(int i=1;i<=amount;i++){
dp[i]=(amount+1);
}
dp[0] = 0;
int res = -1;
for (int i = 1; i <= amount; i++) {
for (int j = 0; j < coins.size(); j++) {
if (i -coins[j]>=0) {
dp[i] = min(dp[i], dp[i - coins[j]] + 1);
}
}
}
res = (dp[amount] == (amount + 1))? -1 : dp[amount];
delete[] dp;
return res;
}