单位: 多伦多大学,安大略省癌症研究所,科威特澳大利亚学院
论文:https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-017-0209-5
期刊:ANN SURG ONCOL/ANNALS OF SURGICAL ONCOLOGY
JCR分区:RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING - Q4
中科院分区:大类-医学 4区[Top];小类-医学 4 区
前言
目的:评估CT影像的纹理特征是否能预测胰腺导管腺癌(Pancreatic ductal adenocarcinoma, PDAC)术后患者的生存期。
数据来源:2007年至2012年期间接受PDAC切除手术的患者。
样本大小:共30个患者病例。
成像方式:CT
提取特征数量:7
特征筛选与分类方法:Cox regression model
评价指标:ROC曲线
论文结构
背景
- 第一段从肿瘤空间异质性角度阐述了基因组学的缺陷,引出医学影像在表现肿瘤空间异质性方面的能力。接下来介绍影像组学,并提出,关于CT纹理特征在胰腺导管腺癌(PDAC)中的潜在预后价值的研究还较少;
- 第二段先描述了PDAC的术后生存率特点,引出新辅助治疗,医学影像可以为PDAC的术后生存率做出贡献;
- 第三段叙述本文的研究目的,评估CT影像的纹理特征是否能预测PDAC术后患者的生存期。
方法
- 患者序列 描述了数据集来源;
- 图像采集 记录了数据集图像采集协议;
- 图像分析 第一段详细描述了ROI勾画方法,第二段描述提取到的特征类型及其计算方式;
- 统计分析 描述了所使用的特征筛选与影像组学方法。
结果
- 第一段描述了数据集的人口统计学信息,并比较了正常胰腺与肿瘤的相关特征参数;
- 第二段第三段描述了特征筛选过程与最终预测结果;
- 第四段展示了筛选出两种显著性特征的直方图,图中还说明了两种特征的生存分布。
讨论
- 第一段叙述了筛选出的两种显著性特征与生存率的相关性要比肿瘤强度、肿瘤大小等特征更强;
- 第二段开头叙述了研究发现,越小的归一化逆差和越大的非相似性,患者的生存时间越长。然后描述相关工作,与肺、胸等其他肿瘤部位研究相比较,发现从ROI中提取到的特征确实与肿瘤患者的生存时间呈正相关;
- 第三段开始画大饼,CT影像的纹理特征在预测肿瘤患者的预后有着光明的未来;
- 第四段研究局限性,先抑后扬。第一,实验所使用数据集较小;第二,应该增加独立验证实验,去除偶然概率。
胰腺与肿瘤图像
特征计算方式
人口统计学信息
正常组织与肿瘤组织的对比
预测结果
对两显著特征的分析