单位: 纪念斯隆凯特琳癌症中心
论文:https://link.springer.com/article/10.1245/s10434-017-6323-3
期刊:BMC MED IMAGING/BMC MEDICAL IMAGING
JCR分区:ONCOLOGY - Q2; SURGERY - Q1
中科院分区:大类-医学 2区[Top];小类-医学 2 区
前言
目的:图像定量分析,预测胰腺导管腺癌(Pancreatic ductal adenocarcinoma, PDAC)预后。
数据来源:2009年至2012年期间接受PDAC切除手术的患者。
样本大小:共161个患者病例,训练集113例,测试集48例。
成像方式:CT
提取特征数量:256
特征筛选与分类方法:Cox regression model
评价指标:C-index(95% CI)和IBS
论文结构
背景
- 第一段描述了PDAC的预后较差,所以我们需要去研究如何在术前预测PDAC患者的预后,以判断该患者是否要进行手术;
- 第二三段研究了目前已发现的影响PDAC患者总生存期预后的临床和病理因素,但这些因素并没有满足我们的需求,所以继续研究,引出了肿瘤大小这一术前标志物概念,接下来便探讨了基于医学影像的计算机肿瘤外观定量评估方法的可行性,最后概括本文目的是评估术前增强CT的纹理分析是否能预测PDAC患者切除后的总生存期。
方法
- 患者序列 描述了数据集来源;
- 临床和病理学变量 记录了实验所需的相关临床和病理学变量;
- 计算机断层扫描(CT)图像采集 记录了数据集图像采集协议;
- 定量计算机断层扫描图像分析 描述了ROI勾画方法和提取到的特征数量和类型;
- 模型建设与评价 描述了模型构建与训练方法,模型评价指标。
结果
- 第一段先描述了数据集筛选的工作流;
- 第二段对筛选后的数据集特征进行简单概况;
- 第三段研究证明了训练集与测试集没有临床和病理变量的统计学差异;
- 第四段叙述对比实验结果。
讨论
- 第一段叙述了当前预测PDAC患者生存率方面能力的不足,现有的方法都依赖于术后数据,所以我们需要一种无创的术前预测PDAC患者预后的方法;
- 第二段通过描述实验结果表明本文提出的两个模型可以基于定量图像特征和临床变量预测总生存率,并且具有良好的泛化能力;
- 第三段叙述消融实验,仅基于Ca19-9水平的预后模型效果差,而加入图像特征后结果有很大提升;
- 第四段尝试解释实验现象;
- 第五段与第三段目的一致,通过与基于Brennan水平的预后模型做对比、消融实验,证明图像特征在预测生存方面具有信息价值;
- 第六段开始讨论成像方式,本文仅使用对比增强CT太单一;
- 最后一段开始叙述论文的缺陷:肿瘤ROI的人工勾画耗时耗力;需要采用不同的成像方案。
特征详情
tumor volume(1)
texture features(255)
A. GLCM (19 Features)
- Energy
- Contrast
- Correlation
- Sum of squares
- Inverse difference moment
- Sum average
- Sum variance
- Entropy
- Difference variance
- Sum entropy
- Difference entropy
- Information-theoretic measures of correlation 1
- Information-theoretic measures of correlation 2
- Maximum correlation coefficient
- Inertia
- Cluster shade
- Cluster prominence
- Renyi entropy
- Tsallis entropy
B. RLM (11 Features)
- Short run emphasis
- Long run emphasis
- Gray-level nonuniformity
- Run length nonuniformity
- Run percentage
- Low gray-level run emphasis
- High gray-level run emphasis
- Short run low gray-level emphasis
- Short run high gray-level emphasis
- Run low gray-level emphasis
- Long run high gray-level emphasis
C. LBP (128 Features)
- 59 unique output levels of uniform LBP (ULBP)
- 10 unique output levels of rotation invariant (RI)
ULBP - Standard deviation (SD), skewness, kurtosis, and
entropy of ULBP histogram - SD, skewness, kurtosis, and entropy of RI-ULBP
histogram - Mean, SD, skewness, kurtosis, and entropy of LBP
histogram - SD, skewness, kurtosis, and entropy of efficient RILBP histogram
- SD, skewness, kurtosis, and entropy of rotated LBP
histogram - 38 Fourier descriptors of RI-ULBP histogram
D. FD (54 Features)
- FD from 16 binary images created from the image
- Mean gray value from each of the 16 binary images
- Pixel count from each of the 16 binary images
- Maximum of mean of FD
- Maximum of standard deviation of FD
- Maximum of lacunarity of FD
- Average of mean of FD
- Average of standard deviation of FD
- Average of lacunarity of FD
E. IH (5 Features)
- Mean
- Standard deviation
- Skewness
- Kurtosis
- Entropy
F. ACM1 and ACM2 (Total 38 Features, 19 From Each)
- Energy
- Contrast
- Correlation
- Sum of squares
- Inverse difference moment
- Sum average
- Sum variance
- Entropy
- Difference variance
- Sum entropy
- Difference entropy
- Information-theoretic measures of correlation1
- Information-theoretic measures of correlation2
- Maximal correlation coefficient
- Inertia
- Cluster shade
- Cluster prominence
- Renyi entropy
- Tsallis entopy