品优购第十三天ActiveMQ理解

  1. 什么是activeMQ

ActiveMQ 是一个 MOM(面向消息中间件(Message-oriented middleware),是用于以分布式应用或系统中的异步、松耦合、可靠、可扩展和安全通信的一类软件。MOM 的总体思想是它作为消息发送器和消息接收器之间的消息中介,这种中介提供了一个全新水平的松耦合),是一个实现了 JMS (Java 消息服务(Java Message Service),是 Java 平台上有关面向 MOM 的技术规范,旨在通过提供标准的产生、发送、接收和处理消息的 API 简化企业应用的开发)规范的系统间远程通信的消息代理

使用流程:

  • 获取连接工厂
  • 使用连接工厂创建连接
  • 启动连接
  • 从连接创建会话
  • 获取 Destination
  • 创建 Producer,或
    • 创建 Producer
    • 创建 message
  • 创建 Consumer,或发送或接收message发送或接收 message
    • 创建 Consumer
    • 注册消息监听器(可选)
  • 发送或接收 message
  • 关闭资源(connection, session, producer, consumer 等)

 

     2.项目中哪里用到了?为什么要用它?

目前主要是3个地方用到了

用来发短信:解耦、异步、削峰(点对点)

用于索引库的更新:解耦、异步(点对点)

用于freemarker静态化页面的更新:解耦、异步(发布/订阅)

 

    3.activeMQ的使用场景

比较核心的有 3 个:解耦、异步、削峰。

先看一下解耦:

A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃......

https://img-blog.csdnimg.cn/20181213162035331.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RvbWVf,size_16,color_FFFFFF,t_70

在这个场景中,A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。A 系统要时时刻刻考虑 BCDE 四个系统如果挂了该咋办?要不要重发,要不要把消息存起来?头发都白了啊!

如果使用 MQA 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。超爽。

通过一个 MQPub/Sub 发布订阅消息这么一个模型,A 系统就跟其它系统彻底解耦了。

https://img-blog.csdnimg.cn/20181213162050469.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RvbWVf,size_16,color_FFFFFF,t_70

面试技巧:你需要去考虑一下你负责的系统中是否有类似的场景,就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦,也是可以的,你就需要去考虑在你的项目里,是不是可以运用这个 MQ 去进行系统的解耦。在简历中体现出来这块东西,用 MQ 作解耦。

再看一下异步:

A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3msBCD 三个系统分别写库要 300ms450ms200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求,等待个 1s,这几乎是不可接受的。

https://img-blog.csdnimg.cn/20181213162103556.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RvbWVf,size_16,color_FFFFFF,t_70

一般互联网类的企业,对于用户直接的操作,一般要求是每个请求都必须在 200 ms 以内完成,对用户几乎是无感知的。

如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5msA 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms,对于用户而言,其实感觉上就是点个按钮,8ms 以后就直接返回了,网站做得真好,真快!

https://img-blog.csdnimg.cn/20181213162112662.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RvbWVf,size_16,color_FFFFFF,t_70

最后看一下削峰:

每天 0:00 12:00A 系统风平浪静,每秒并发请求数量就 50 个。结果每次一到 12:00 ~ 13:00 ,每秒并发请求数量突然会暴增到 5k+ 条。但是系统是直接基于 MySQL的,大量的请求涌入 MySQL,每秒钟对 MySQL 执行约 5k SQL

一般的 MySQL,扛到每秒 2k 个请求就差不多了,如果每秒请求到 5k 的话,可能就直接把 MySQL 给打死了,导致系统崩溃,用户也就没法再使用系统了。

但是高峰期一过,到了下午的时候,就成了低峰期,可能也就 1w 的用户同时在网站上操作,每秒中的请求数量可能也就 50 个请求,对整个系统几乎没有任何的压力。

https://img-blog.csdnimg.cn/20181213162122999.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RvbWVf,size_16,color_FFFFFF,t_70

如果使用 MQ,每秒 5k 个请求写入 MQA 系统每秒钟最多处理 2k 个请求,因为 MySQL 每秒钟最多处理 2k 个。A 系统从 MQ 中慢慢拉取请求,每秒钟就拉取 2k 个请求,不要超过自己每秒能处理的最大请求数量就 ok,这样下来,哪怕是高峰期的时候,A 系统也绝对不会挂掉。而 MQ 每秒钟 5k 个请求进来,就 2k 个请求出去,结果就导致在中午高峰期(1 个小时),可能有几十万甚至几百万的请求积压在 MQ 中。

这个短暂的高峰期积压是 ok 的,因为高峰期过了之后,每秒钟就 50 个请求进 MQ,但是 A 系统依然会按照每秒 2k 个请求的速度在处理。所以说,只要高峰期一过,A 系统就会快速将积压的消息给解决掉。

https://img-blog.csdnimg.cn/20181213162132967.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RvbWVf,size_16,color_FFFFFF,t_70

使用了消息队列给项目带来的缺点:

  • 系统可用性降低:本来其他系统只要运行好好的,那你的系统就是正常的。现在你非要加个消息队列进去,那消息队列挂了,你的系统不是GG了。因此,系统可用性降低
  • 系统复杂性增加:要多考虑很多方面的问题,比如一致性问题、如何保证消息不被重复消费,如何保证保证消息可靠传输。因此,需要考虑的东西更多,系统复杂性增大。

 

     4.activeMQ的消息转发有哪几种方式?

先要理解几个关键性的概念:

Provider:纯 Java 语言编写的 JMS 接口实现(比如 ActiveMQ 就是)

Domains:消息传递方式,包括点对点(P2P)、发布/订阅(Pub/Sub)两种

Connection factory:客户端使用连接工厂来创建与 JMS provider 的连接

Destination:消息被寻址、发送以及接收的对象

点对点方式:

P2P (点对点)消息域使用 queue 作为 Destination,消息可以被同步或异步的发送和接收,每个消息只会给一个 Consumer 传送一次。

Consumer 可以使用 MessageConsumer.receive() 同步地接收消息,也可以通过使用MessageConsumer.setMessageListener() 注册一个 MessageListener 实现异步接收。

多个 Consumer 可以注册到同一个 queue 上,但一个消息只能被一个 Consumer 所接收,然后由该 Consumer 来确认消息。并且在这种情况下,Provider 对所有注册的 Consumer 以轮询的方式发送消息。

ActiveMQ 在 queue 中存储 Message 时,采用先进先出顺序(FIFO)存储。同一时间一个消息被分派给单个消费者,且只有当 Message 被消费并确认时,它才能从存储中删除。

发布/订阅方式:

Pub/Sub(发布/订阅,Publish/Subscribe)消息域使用 topic 作为 Destination,发布者向 topic 发送消息,订阅者注册接收来自 topic 的消息。发送到 topic 的任何消息都将自动传递给所有订阅者。接收方式(同步和异步)与 P2P 域相同。
除非显式指定,否则 topic 不会为订阅者保留消息。当然,这可以通过持久化(Durable)订阅来实现消息的保存。这种情况下,当订阅者与 Provider 断开时,Provider 会为它存储消息。当持久化订阅者重新连接时,将会受到所有的断连期间未消费的消息。

对于持久化订阅者来说,每个消费者获得 Message 的副本。为了节省存储空间,Provider 仅存储消息的一个副本。持久化订阅者维护了指向下一个 Message 的指针,并将其副本分派给消费者。以这种方式实现消息存储,因为每个持久化订阅者可能以不同的速率消费 Message,或者它们可能不是全部同时运行。此外,因每个 Message 可能存在多个消费者,所以在它被成功地传递给所有持久化订阅者之前,不能从存储中删除。

消息类型

是否持久化

是否有Durable订阅者

消费者延迟启动时,消息是否保留

Broker(MQ的一个节点)重启时,消息是否保留

Queue

N

-

Y

N

Queue

Y

-

Y

Y

Topic

N

N

N

N

Topic

N

Y

Y

N

Topic

Y

N

N

N

Topic

Y

Y

Y

Y

 

     5.activeMQ常用的的存储方式

1.KahaDB

ActiveMQ 5.3 版本起的默认存储方式。KahaDB存储是一个基于文件的快速存储消息,设计目标是易于使用且尽可能快。

2.AMQ

与 KahaDB 存储一样,AMQ存储使用户能够快速启动和运行,因为它不依赖于第三方数据库。AMQ 消息存储库是可靠持久性和高性能索引的事务日志组合,当消息吞吐量是应用程序的主要需求时,该存储是最佳选择。但因为它为每个索引使用两个分开的文件,并且每个 Destination 都有一个索引,所以当你打算在代理中使用数千个队列的时候,不应该使用它。

3.JDBC

选择关系型数据库,通常的原因是企业已经具备了管理关系型数据的专长,但是它在性能上绝对不优于上述消息存储实现。事实是,许多企业使用关系数据库作为存储,是因为他们更愿意充分利用这些数据库资源。

4.内存存储

内存消息存储器将所有持久消息保存在内存中。在仅存储有限数量 Message 的情况下,内存消息存储会很有用,因为 Message 通常会被快速消耗。在 activema.xml 中将 broker 元素上的 persistent 属性设置为 false 即可。

 

     6.activeMQ相类似的技术有哪些?各自的优缺点是什么?

(1)中小型软件公司,建议选RabbitMQ.一方面,erlang语言天生具备高并发的特性,而且他的管理界面用起来十分方便。正所谓,成也萧何,败也萧何!他的弊端也在这里,虽然RabbitMQ是开源的,然而国内有几个能定制化开发erlang的程序员呢?所幸,RabbitMQ的社区十分活跃,可以解决开发过程中遇到的bug,这点对于中小型公司来说十分重要。不考虑rocketmq和kafka的原因是,一方面中小型软件公司不如互联网公司,数据量没那么大,选消息中间件,应首选功能比较完备的,所以kafka排除。不考虑rocketmq的原因是,rocketmq是阿里出品,如果阿里放弃维护rocketmq,中小型公司一般抽不出人来进行rocketmq的定制化开发,因此不推荐。
(2)大型软件公司,根据具体使用在rocketMq和kafka之间二选一。一方面,大型软件公司,具备足够的资金搭建分布式环境,也具备足够大的数据量。针对rocketMQ,大型软件公司也可以抽出人手对rocketMQ进行定制化开发,毕竟国内有能力改JAVA源码的人,还是相当多的。至于kafka,根据业务场景选择,如果有日志采集功能,肯定是首选kafka了。具体该选哪个,看使用场景。

https://img-blog.csdnimg.cn/20181213162150917.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RvbWVf,size_16,color_FFFFFF,t_70

 

     7.在开发过程中,遇到过哪些关于activeMQ的问题,怎么解决的?

1.服务挂掉。

这得从ActiveMQ的储存机制说起。在通常的情况下,非持久化消息是存储在内存中的,持久化消息是存储在文件中的,它们的最大限制在配置文件的<systemUsage>节点中配置。但是,在非持久化消息堆积到一定程度,内存告急的时候,ActiveMQ会将内存中的非持久化消息写入临时文件中,以腾出内存。虽然都保存到了文件里,但它和持久化消息的区别是,重启后持久化消息会从文件中恢复,非持久化的临时文件会直接删除。

那如果文件增大到达了配置中的最大限制的时候会发生什么?做了以下实验:

设置2G左右的持久化文件限制,大量生产持久化消息直到文件达到最大限制,此时生产者阻塞,但消费者可正常连接并消费消息,等消息消费掉一部分,文件删除又腾出空间之后,生产者又可继续发送消息,服务自动恢复正常。

设置2G左右的临时文件限制,大量生产非持久化消息并写入临时文件,在达到最大限制时,生产者阻塞,消费者可正常连接但不能消费消息,或者原本慢速消费的消费者,消费突然停止。整个系统可连接,但是无法提供服务,就这样挂了。

具体原因不详,解决方案:尽量不要用非持久化消息,非要用的话,将临时文件限制尽可能的调大。

详细配置信息见文档:http://activemq.apache.org/producer-flow-control.html

2、丢消息

这得从java的java.net.SocketException异常说起。简单点说就是当网络发送方发送一堆数据,然后调用close关闭连接之后。这些发送的数据都在接收者的缓存里,接收者如果调用read方法仍旧能从缓存中读取这些数据,尽管对方已经关闭了连接。但是当接收者尝试发送数据时,由于此时连接已关闭,所以会发生异常,这个很好理解。不过需要注意的是,当发生SocketException后,原本缓存区中数据也作废了,此时接收者再次调用read方法去读取缓存中的数据,就会报Software caused connection abort: recv failed错误。

通过抓包得知,ActiveMQ会每隔10秒发送一个心跳包,这个心跳包是服务器发送给客户端的,用来判断客户端死没死。如果你看过上面第一条,就会知道非持久化消息堆积到一定程度会写到文件里,这个写的过程会阻塞所有动作,而且会持续2030秒,并且随着内存的增大而增大。当客户端发完消息调用connection.close()时,会期待服务器对于关闭连接的回答,如果超过15秒没回答就直接调用socket层的close关闭tcp连接了。这时客户端发出的消息其实还在服务器的缓存里等待处理,不过由于服务器心跳包的设置,导致发生了java.net.SocketException异常,把缓存里的数据作废了,没处理的消息全部丢失。

解决方案:用持久化消息,或者非持久化消息及时处理不要堆积,或者启动事务,启动事务后,commit()方法会负责任的等待服务器的返回,也就不会关闭连接导致消息丢失了。

关于java.net.SocketException请看详细研究:

http://blog.163.com/_kid/blog/static/3040547620160231534692/

3.持久化消息非常慢。

默认的情况下,非持久化的消息是异步发送的,持久化的消息是同步发送的,遇到慢一点的硬盘,发送消息的速度是无法忍受的。但是在开启事务的情况下,消息都是异步发送的,效率会有2个数量级的提升。所以在发送持久化消息时,请务必开启事务模式。其实发送非持久化消息时也建议开启事务,因为根本不会影响性能。

4.消息的不均匀消费。

有时在发送一些消息之后,开启2个消费者去处理消息。会发现一个消费者处理了所有的消息,另一个消费者根本没收到消息。原因在于ActiveMQ的prefetch机制。当消费者去获取消息时,不会一条一条去获取,而是一次性获取一批,默认是1000条。这些预获取的消息,在还没确认消费之前,在管理控制台还是可以看见这些消息的,但是不会再分配给其他消费者,此时这些消息的状态应该算作“已分配未消费”,如果消息最后被消费,则会在服务器端被删除,如果消费者崩溃,则这些消息会被重新分配给新的消费者。但是如果消费者既不消费确认,又不崩溃,那这些消息就永远躺在消费者的缓存区里无法处理。更通常的情况是,消费这些消息非常耗时,你开了10个消费者去处理,结果发现只有一台机器吭哧吭哧处理,另外9台啥事不干。

解决方案:将prefetch设为1,每次处理1条消息,处理完再去取,这样也慢不了多少。

详细文档:http://activemq.apache.org/what-is-the-prefetch-limit-for.html

5.死信队列。

如果你想在消息处理失败后,不被服务器删除,还能被其他消费者处理或重试,可以关闭AUTO_ACKNOWLEDGE,将ack交由程序自己处理。那如果使用了AUTO_ACKNOWLEDGE,消息是什么时候被确认的,还有没有阻止消息确认的方法?有!

消费消息有2种方法,一种是调用consumer.receive()方法,该方法将阻塞直到获得并返回一条消息。这种情况下,消息返回给方法调用者之后就自动被确认了。另一种方法是采用listener回调函数,在有消息到达时,会调用listener接口的onMessage方法。在这种情况下,在onMessage方法执行完毕后,消息才会被确认,此时只要在方法中抛出异常,该消息就不会被确认。那么问题来了,如果一条消息不能被处理,会被退回服务器重新分配,如果只有一个消费者,该消息又会重新被获取,重新抛异常。就算有多个消费者,往往在一个服务器上不能处理的消息,在另外的服务器上依然不能被处理。难道就这么退回--获取--报错死循环了吗?

在重试6次后,ActiveMQ认为这条消息是“有毒”的,将会把消息丢到死信队列里。如果你的消息不见了,去ActiveMQ.DLQ里找找,说不定就躺在那里。

详细文档:http://activemq.apache.org/redelivery-policy.html

http://activemq.apache.org/message-redelivery-and-dlq-handling.html

 

RabbitMQ参考文档:

https://www.cnblogs.com/williamjie/p/9481774.html  RabbitMQ基础概念详细介绍

https://blog.csdn.net/anzhsoft/article/details/19563091  RabbitMQ消息队列

https://segmentfault.com/a/1190000016351345  https://blog.csdn.net/qq_26656329/article/details/77891793  RabbitMQ参数调优

 

Kafka参考文档:

https://blog.csdn.net/lingbo229/article/details/80761778

https://blog.csdn.net/z69183787/article/details/80323581

http://blog.51cto.com/xpleaf/2090847

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页