KNN的优化算法1:距离加权

本文介绍了kNN算法中的加权方法,包括反函数和高斯函数两种加权方式,并详细解释了它们的工作原理及优缺点。此外还讨论了如何在离散型和数值型数据中应用加权kNN。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文章:https://www.cnblogs.com/bigmonkey/p/7387943.html

对参考文章中最后一部分说的有问题的地方进行了修改。

 

权值加权:为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权。

反函数

  该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d。有时候,完全一样或非常接近的商品权重会很大甚至无穷大。基于这样的原因,在距离求倒数时,在距离上加一个常量:

  weight = 1 / (distance + const)

  这种方法的潜在问题是,它为近邻分配很大的权重,稍远一点的会衰减的很快。虽然这种情况是我们希望的,但有时候也会使算法对噪声数据变得更加敏感。

高斯函数

  高斯函数比较复杂,但克服了前述函数的缺点,其形式:

  其中a,b,c∈R

  高斯函数的图形在形状上像一个倒悬着的钟。a是曲线的高度,b是曲线中心线在x轴的偏移,c是半峰宽度(函数峰值一半处相距的宽度)。

半峰宽度

def gaussian(dist, a=1, b=0, c=0.3):
    return a * math.e ** (-(dist - b) ** 2 / (2 * c ** 2))

  上面的高斯函数在距离为0的时候权重为1,随着距离增大,权重减少,但不会变为0。下图是高斯函数和其它几个函数的区别,其它函数在距离增大到一定程度时,权重都跌至0或0以下。

计算过程

  加权kNN首先获得经过排序的距离值,再取距离最近的k个元素。

  1.在处理离散型数据时,将这k个数据用权重区别对待,预测结果与第n个数据的label相同的概率:

        将各个类预测的权重值相加,哪个类最大,就属于哪个类。

        f(x) = Wi属于类x / Wi总和      i=1,2,...,k

  2.在处理数值型数据时,并不是对这k个数据简单的求平均,而是加权平均:通过将每一项的值乘以对应权重,然后将结果累加。求出总和后,除以所有权重之和。

      f(x) = Wi*Vi总和 / Wi总和  i=1,2,...,k

  Vi代表近邻i的值,Wi代表其权重,f(x)是预测的数值型结果。每预测一个新样本的所属类别时,都会对整体样本进行遍历,可以看出kNN的效率实际上是十分低下的。

CAN长字节DM1报文是指在CAN总线上传输的长度超过8个字节的DM1报文。根据引用\[1\],当要传输的数据长度超过8个字节时,首先使用TPCM进行广播,广播内容包含即将传输报文的PGN、总的数据包长度等信息,然后使用TP.DT进行数据传输。相邻两个TP.DT之间的时间间隔是50ms到200ms。根据引用\[2\],当字节数大于8时,将会使用多帧传输参数组。根据引用\[3\],DM1报文是Diagnostic Message 1, Active Diagnostic Trouble Codes的缩写,用于点亮故障指示灯、红色停机灯等,并周期性播报控制器中处于激活状态的故障码。DM1报文的格式包括各个字节的定义,如故障指示灯、红色停机灯、琥珀色警告指示灯等。因此,CAN长字节DM1报文是指在CAN总线上传输的长度超过8个字节的DM1报文,用于传输更多的故障码信息。 #### 引用[.reference_title] - *1* [车载通信——J1939 DM1](https://blog.csdn.net/weixin_64064747/article/details/130193432)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [J1939广播DM1报文](https://blog.csdn.net/mengdeguodu_/article/details/108173263)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [J1939商用车在线诊断DM1报文](https://blog.csdn.net/traveller93/article/details/120735912)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值