Tensorflow—model.compile ()

参数列表

model.compile(optimizer,
            loss=None,
             metrics=None,
             loss_weights=None,
             sample_weight_mode=None,
             weighted_metrics=None,
             target_tensors=None,
              **kwargs):

optimizer:深度学习优化算法经历了SGD(随机下降梯度算法)    →SGDM→NAG→Adagrad→Adadelta(RMSprop)→Adam(使用最多)→Nadam发展历程

loss:损失函数,可以用自带的,也可以自定义.如果模型有多个输出,可以传入一个字典或者损失列表,模型降会把这些损失加在一起

metrics: 评价函数,与损失函数类似,评价函数的结果不会用于训练过程中,可以传递已有的评价函数名称,或者传递一个自定义的theano/tensorflow函数来使用

loss_weights:可选项,是一个list或字典,指定不同的损失的系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值