LeetCode - 面试题10-II - 青蛙跳台阶问题

一 目录

不折腾的前端,和咸鱼有什么区别

目录
一 目录
二 题目
三 解题思路
四 统计分析
五 解题套路

二 题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。

求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),
如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:2
示例 2:

输入:n = 7
输出:21
提示:

0 <= n <= 100

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/qing-wa-tiao-tai-jie-wen-ti-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
/**
 * @param {number} n
 * @return {number}
 */
var numWays = function(n) {

};

根据上面的已知函数,小伙伴们可以先尝试破解本题,确定了自己的答案后再看下面代码。

三 解题思路

首先,研究研究:

1 -> 1
2 -> 2
3 -> 3
4 -> 5

卧槽,这不就是斐波那契数列吗?再在控制台试了下,还真是 7 的时候是 21……

5 分钟研究规律完毕,斐波那契数列题目转型~

再花个 15 分钟写两种解法:

主要还是想尾递归耗时多点,毕竟还没那么熟练


解法 1:尾递归

const numWays = (n, prev = 1, next = 1) => {
  if (n === 0) return 1;
  if (n === 1) return next;
  return numWays(n - 1, next, (prev + next) % 1000000007);
};

解法 2:迭代

const numWays = (n) => {
  if (n === 0) return 1;
  if (n === 1) return 1;
  let prev = 1, next = 1, result;
  for (let i = 1; i < n; i++) {
    result = (prev + next) % 1000000007;
    prev = next;
    next = result;
  }
  return result;
};

这两种解法就是【刷题技巧】中斐波那契数列的其中较好的两种了,直接上不解释。

斐波那契数列刷题技巧地址:https://github.com/LiangJunrong/document-library/tree/master/other-library/LeetCode/刷题技巧

四 统计分析

不统计~

五 套路分析

本题的套路为斐波那契数列变型。

如果小伙伴有更好的思路想法,或者没看懂其中某种解法,欢迎评论留言或者私聊 jsliang~


不折腾的前端,和咸鱼有什么区别!

jsliang 会每天更新一道 LeetCode 题解,从而帮助小伙伴们夯实原生 JS 基础,了解与学习算法与数据结构。

浪子神剑 会每天更新面试题,以面试题为驱动来带动大家学习,坚持每天学习与思考,每天进步一点!

扫描上方二维码,关注 jsliang 的公众号(左)和 浪子神剑 的公众号(右),让我们一起折腾!

jsliang 的文档库 由 梁峻荣 采用 知识共享 署名-非商业性使用-相同方式共享 4.0 国际 许可协议进行许可。
基于https://github.com/LiangJunrong/document-library上的作品创作。
本许可协议授权之外的使用权限可以从 https://creativecommons.org/licenses/by-nc-sa/2.5/cn/ 处获得。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读