Flink官方文档:https://ci.apache.org/projects/flink/flink-docs-release-1.5/quickstart/setup_quickstart.html
本文档只讲解Flink在Linux系统中的安装使用。Windows用户,请查看官方文档:
https://ci.apache.org/projects/flink/flink-docs-release-1.5/start/flink_on_windows.html
1.1下载并启动Flink
(1)检查JDK。
为了能够运行Flink,唯一的要求是安装一个有效的Java8.x。
可以通过以下命令来检查Java是否正确安装:
[hadoop@rdpecore1 ~]$ java -version
如果有Java8,将输出如下结果:
java version "1.8.0_171"
Java(TM) SE Runtime Environment (build 1.8.0_171-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.171-b11, mixed mode)
(2)下载Flink。
Flink下载:http://flink.apache.org/downloads.html
解压下载的文件:
[hadoop@rdpecore1 core]$ tar -zxvf flink-1.5.1-bin-hadoop27-scala_2.11.tgz
为使用方便,将解压后的目录更名为flink:
[hadoop@rdpecore1 core]$ mv flink-1.5.1 flink
(3)启动Flink。
启动本地Flink集群:
[hadoop@rdpecore1 flink]$ ./bin/start-cluster.sh
Starting cluster.
Starting standalonesession daemon on host rdpecore1.
Starting taskexecutor daemon on host rdpecore1.
(4)验证Flink是否正常启动。
打开http://rdpecore1:8081检查Flink组件是否正常运行。Web UI中应该会显示只有一个可用的TaskManager实例。
还可以通过检查log目录中的日志文件来验证系统是否正在运行:
[hadoop@rdpecore1 flink]$ tail log/flink-hadoop-standalonesession-2-rdpecore1.log
2018-07-24 14:20:23,017 INFO org.apache.flink.runtime.resourcemanager.StandaloneResourceManager - ResourceManager akka.tcp://flink@localhost:6123/user/resourcemanager was granted leadership with fencing token 00000000000000000000000000000000
2018-07-24 14:20:23,018 INFO org.apache.flink.runtime.resourcemanager.slotmanager.SlotManager - Starting the SlotManager.
2018-07-24 14:20:23,052 INFO org.apache.flink.runtime.dispatcher.StandaloneDispatcher - Dispatcher akka.tcp://flink@localhost:6123/user/dispatcher was granted leadership with fencing token 00000000-0000-0000-0000-000000000000
2018-07-24 14:20:23,052 INFO org.apache.flink.runtime.dispatcher.StandaloneDispatcher - Recovering all persisted jobs.
2018-07-24 14:20:26,849 INFO org.apache.flink.runtime.resourcemanager.slotmanager.SlotManager - Registering TaskManager 3df9cee680a5c6053d28d2cabd17a9cf under 8453da1201b81a610c18ac23f6cef4c0 at the SlotManager.
1.2阅读样例代码
GitHub上有样例SocketWindowWordCount的完整源代码。
(1)Scala代码:
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.streaming.scala.examples.socket
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
/**
* Implements a streaming windowed version of the "WordCount" program.
*
* This program connects to a server socket and reads strings from the socket.
* The easiest way to try this out is to open a text sever (at port 12345)
* using the ''netcat'' tool via
* {{{
* nc -l 12345
* }}}
* and run this example with the hostname and the port as arguments..
*/
object SocketWindowWordCount {
/** Main program method */
def main(args: Array[String]) : Unit = {
// the host and the port to connect to
var hostname: String = "localhost"
var port: Int = 0
try {
val params = ParameterTool.fromArgs(args)
hostname = if (params.has("hostname")) params.get("hostname") else "localhost"
port = params.getInt("port")
} catch {
case e: Exception => {
System.err.println("No port specified. Please run 'SocketWindowWordCount " +
"--hostname <hostname> --port <port>', where hostname (localhost by default) and port " +
"is the address of the text server")
System.err.println("To start a simple text server, run 'netcat -l <port>' " +
"and type the input text into the command line")
return
}
}
// get the execution environment
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// get input data by connecting to the socket
val text: DataStream[String] = env.socketTextStream(hostname, port, '\n')
// parse the data, group it, window it, and aggregate the counts
val windowCounts = text
.flatMap { w => w.split("\\s") }
.map { w => WordWithCount(w, 1) }
.keyBy("word")
.timeWindow(Time.seconds(5))
.sum("count")
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1)
env.execute("Socket Window WordCount")
}
/** Data type for words with count */
case class WordWithCount(word: String, count: Long)
}
Java代码:
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.streaming.examples.socket;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
/**
* Implements a streaming windowed version of the "WordCount" program.
*
* <p>This program connects to a server socket and reads strings from the socket.
* The easiest way to try this out is to open a text server (at port 12345)
* using the <i>netcat</i> tool via
* <pre>
* nc -l 12345
* </pre>
* and run this example with the hostname and the port as arguments.
*/
@SuppressWarnings("serial")
public class SocketWindowWordCount {
public static void main(String[] args) throws Exception {
// the host and the port to connect to
final String hostname;
final int port;
try {
final ParameterTool params = ParameterTool.fromArgs(args);
hostname = params.has("hostname") ? params.get("hostname") : "localhost";
port = params.getInt("port");
} catch (Exception e) {
System.err.println("No port specified. Please run 'SocketWindowWordCount " +
"--hostname <hostname> --port <port>', where hostname (localhost by default) " +
"and port is the address of the text server");
System.err.println("To start a simple text server, run 'netcat -l <port>' and " +
"type the input text into the command line");
return;
}
// get the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data by connecting to the socket
DataStream<String> text = env.socketTextStream(hostname, port, "\n");
// parse the data, group it, window it, and aggregate the counts
DataStream<WordWithCount> windowCounts = text
.flatMap(new FlatMapFunction<String, WordWithCount>() {
@Override
public void flatMap(String value, Collector<WordWithCount> out) {
for (String word : value.split("\\s")) {
out.collect(new WordWithCount(word, 1L));
}
}
})
.keyBy("word")
.timeWindow(Time.seconds(5))
.reduce(new ReduceFunction<WordWithCount>() {
@Override
public WordWithCount reduce(WordWithCount a, WordWithCount b) {
return new WordWithCount(a.word, a.count + b.count);
}
});
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1);
env.execute("Socket Window WordCount");
}
// ------------------------------------------------------------------------
/**
* Data type for words with count.
*/
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
1.3运行样例
现在,我们将运行此Flink应用程序。它将从socket读取文本,并且每5秒打印一次前5秒内每个不同单词的出现次数,即处理时间的翻滚窗口,只要文字在里面浮动。
(1)首先,我们使用netcat来启动本地服务器。
[hadoop@rdpecore1 flink]$ nc -l 9001
启动后,终端会一直处于等待状态。
(2)再打开一个新的终端,在其中提交Flink程序。
[hadoop@rdpecore1 flink]$ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9001
Starting execution of program
Program execution finished
Job with JobID c7b4f7bd16b96ae718bf658c8b129848 has finished.
Job Runtime: 386160 ms
(3)程序连接了socket并等待输入。可以在Web UI中检查Job是否正常运行。
(4)输入数据。
单词在5秒的时间窗口(处理时间,滚动窗口)中被计算,并被打印到stdout。监控TaskManage的输出文件,并在nc中写入一些文本(输入的文本在点击后按行发送到Flink)。
[hadoop@rdpecore1 flink]$ nc -l 9001
hello world
flink
(5)在.out文件中查看处理结果。
[hadoop@rdpecore1 flink]$ tail -f log/flink-hadoop-taskexecutor-2-rdpecore1.out
hello : 1
world : 1
flink : 1
(6)停止Flink。
[hadoop@rdpecore1 flink]$ ./bin/stop-cluster.sh