CNN 卷积神经网络详解及 PyTorch 实现

🧠 CNN 卷积神经网络详解及 PyTorch 实现

卷积神经网络(CNN)是深度学习中最常用的网络结构之一,广泛应用于图像分类、目标检测、语义分割等任务中。本篇文章我们将从理论到实践,带你全面理解 CNN 的原理,并使用 PyTorch 实现一个 CNN 模型,完成手写数字识别任务。


📚 一、什么是卷积神经网络(CNN)

CNN 是一种具有局部感受野和参数共享机制的深度神经网络,尤其适合处理二维图像。

📌 核心组成:

组件 作用
卷积层(Conv) 提取局部特征
激活函数(如 ReLU) 引入非线性
池化层(Pooling) 降维、保留主要特征
全连接层(FC) 输出分类结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风亦辰739

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值