🧠 CNN 卷积神经网络详解及 PyTorch 实现
卷积神经网络(CNN)是深度学习中最常用的网络结构之一,广泛应用于图像分类、目标检测、语义分割等任务中。本篇文章我们将从理论到实践,带你全面理解 CNN 的原理,并使用 PyTorch 实现一个 CNN 模型,完成手写数字识别任务。
📚 一、什么是卷积神经网络(CNN)
CNN 是一种具有局部感受野和参数共享机制的深度神经网络,尤其适合处理二维图像。
📌 核心组成:
组件 |
作用 |
卷积层(Conv) |
提取局部特征 |
激活函数(如 ReLU) |
引入非线性 |
池化层(Pooling) |
降维、保留主要特征 |
全连接层(FC) |
输出分类结果 |