[编程题]重建二叉树
链接:https://www.nowcoder.com/questionTerminal/8a19cbe657394eeaac2f6ea9b0f6fcf6
来源:牛客网
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
import java.lang.reflect.Array;
import java.util.Arrays;
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode root=reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);
return root;
}
//前序遍历{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}
private TreeNode reConstructBinaryTree(int [] pre,int startPre,int endPre,int [] in,int startIn,int endIn) {
System.out.println("startPre=" + startPre + "endPre=" + endPre + "startIn=" + startIn + "endIn=" + endIn);
//startPre>endPre 即没有子节点
//startIn>endIn 即判断完了
if(startPre>endPre||startIn>endIn) {
System.out.println("............");
return null;
}
TreeNode root=new TreeNode(pre[startPre]); //注意这里
for(int i=startIn;i<=endIn;i++)
if(in[i]==pre[startPre]){
/* startPre-startIn+i 即 (startPre+1)+(i-startIn)-1
* startPre 即当前前序节点的位置,即当前节点的位置,startPre+1 即下一个节点的位置
* i-startIn 即 当前节点位置-起始节点位置=当前节点的左边还有多少个节点 即左子树有多少个节点
* (i-startIn)-1 由于上面startPre+1从下一个节点开始,故左子树节点的数量要-1
* (startPre+1)+(i-startIn)-1 = 当前节点的左子树的节点数量 即 ((startPre+1)+(i-startIn)-1)-startPre = i-startIn(当前节点的左子树节点的数量)
* 即下一次的 endPre=这次的 startPre + (i-startIn)
*/
root.left=reConstructBinaryTree(pre,startPre+1,startPre+(i-startIn),in,startIn,i-1);
System.out.println("....开始右子树........");
/*
* startPre+1+(i-startIn)-1+1---endPre(当前节点的左子树节点在前序节点的位置)
* startPre+(i-startIn)+1 即 下一个右子树的位置 = 当前节点的位置+当前节点的左子树节点的数量 +1
*/
root.right=reConstructBinaryTree(pre,startPre+(i-startIn)+1,endPre,in,i+1,endIn);
}
return root;
}
}
深入理解
前序遍历中,队列的第一个元素为根节点,再从中序遍历列表中查找与根节点相同的元素,此时该元素的左边为左子树节点,右边为右子树节点。
接着,从该节点进行递归遍历,就得到了。
以上是编程的原题,唯一难点在于以下两段:
root.left=reConstructBinaryTree(pre,startPre+1,startPre+(i-startIn),in,startIn,i-1);
root.right=reConstructBinaryTree(pre,startPre+(i-startIn)+1,endPre,in,i+1,endIn);
为什么root.left中下次的endPre是startPre+(i-startIn)而root.right中下次的startPre是startPre+(i-startIn)+1
为了更加理解,对题目做一下修改,修改为:
前序遍历序列{1,2,4,7,9,3,5,6,8}和中序遍历序列{4,7,2,9,1,5,3,8,6},
此时二叉树的结构为:
当执行到节点2时,节点状况如下所示:
此时,i - startIn 表示节点2的左子树的节点数量为2,即4和7.
此时遍历节点2的左子树时,前序节点中从startPre到startPre+2的都是节点2的左子树节点,故root.left中下次的endPre是startPre+(i-startIn)
当遍历节点2的右子树时,遍历节点2的右子树的起始节点如图所示为前序列表的9,此时startPre+(i-startIn)+1,即startPre+单前节点的左子树节点的数量+1
故:root.right中下次的startPre是startPre+(i-startIn)+1
额外补充:
前序遍历(先根遍历):先遍历根节点,再遍历左子节点,最后遍历右节点
中序遍历:先遍历左节点,再遍历根节点,最后遍历右节点
后序遍历(先根遍历):先遍历左节点,再遍历右节点,最后遍历根节点