BERT
NLP蜗牛
Nlp上的蜗牛
展开
-
获取预训练bert模型中所有的训练参数
# 获取模型中所有的训练参数。tvars = tf.trainable_variables()# 加载BERT模型(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, pm.init_checkpoint)tf.train.init_from_checkpoint(pm.init_checkpoint, assignment_map)tf.logging原创 2020-07-22 21:18:42 · 1138 阅读 · 3 评论 -
BERT添加分类层-softmax
分类:with tf.variable_scope('fully_connected'): output = embedding_inputs[:, 0, :] output = tf.layers.dropout(output, keep_pro) final_out = tf.layers.dense(output, pm.num_classes) score = tf.nn.softmax(final_out) predict = tf.argmax(scor原创 2020-07-22 21:16:56 · 3146 阅读 · 0 评论 -
BERT源码注释(run_classifier.py) - 全网最详细-【转载】
抱着学习的心态,来转载这篇博客,如有侵犯,请联系删除原文链接:链接点这里# coding=utf-8# bert注解版# raw author: Google# explain author:putdoor"""BERT finetuning runner."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimpor转载 2020-07-01 21:01:16 · 745 阅读 · 0 评论 -
BERT生成句向量bert-as-server
方法一:直接生成词向量其中extract_features.py文件为bert句向量生成文件:方法二:三行代码直接生成句子向量使用方式bert-as-service的总体架构如下:1、bert模型部署,是为服务端2、bert请求调用服务,是为客户端使用方式如下:1、环境准备pip install bert-serving-server pip install bert-serving-client 2、预训练的模型下载前往https://github.com/google-re原创 2020-06-21 17:07:24 · 1773 阅读 · 1 评论 -
[转载]Macropodus自然语言处理(NLP)工具包(Albert+BiLSTM+CRF)
【转载】今天上午浏览了一篇文章,觉得很好,趁热膜拜一下。一、简介Macropodus自然语言处理工具(Albert+BiLSTM+CRF) 中文分词 命名实体识别 新词发现 关键词 文本摘要 计算器 中文数字阿拉伯数字转换。Macropodus是一个以Albert+BiLSTM+CRF网络结构为基础,用大规模中文语料训练的自然语言处理工具包。将提供中文分词、命名实体识别、关键词抽取、文本摘要...原创 2020-02-03 14:06:57 · 466 阅读 · 0 评论 -
BERT主体模型modeling.py学习记录
```python1、配置class BertConfig(object): """Configuration for `BertModel`.""" def __init__(self, vocab_size, hidden_size=768, num_hidden_layers=12,...原创 2020-01-30 20:59:27 · 347 阅读 · 0 评论 -
bert模型数据各个特征的含义
features["input_ids"] :每个中文字对应的词库idfeatures["input_mask"] : The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.features["segment_ids"] : 句子标记的id(表明属于哪一个句子)f...原创 2020-01-30 18:58:21 · 1948 阅读 · 0 评论