获取预训练bert模型中所有的训练参数

# 获取模型中所有的训练参数。
tvars = tf.trainable_variables()
# 加载BERT模型
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, pm.init_checkpoint)

tf.train.init_from_checkpoint(pm.init_checkpoint, assignment_map)

tf.logging.info("**** Trainable Variables ****")
# 打印加载模型的参数
for var in tvars:
    init_string = ""
    if var.name in initialized_variable_names:
        init_string = ", *INIT_FROM_CKPT*"
    tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                    init_string)
session = tf.Session()
session.run(tf.global_variables_initializer())
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值