BERT添加分类层-softmax

分类:

with tf.variable_scope('fully_connected'):
    output = embedding_inputs[:, 0, :]
    output = tf.layers.dropout(output, keep_pro)
    final_out = tf.layers.dense(output, pm.num_classes)
    score = tf.nn.softmax(final_out)
    predict = tf.argmax(score, 1)
  1. 取每一句中CLS位置的值作为全连接层的输入,然后进行softmax。
  2. 另外,如果做NER的话,那是输入就是bert_embedding.get_sequence_output()。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值