这是我的第一篇博客!
由于最近配置躺坑挺多,就记录一下吧。话不多说,开始吧
1.下载cuda和cudnn;
我的版本: cuda:9.0 cudnn:7.05;
- 下载好后运行cuda安装程序,选择自定义,然后无脑下一步,直至安装结束
- 若出现安装失败,可能是之前的版本删除不完整,可到控制面板的卸载把有关于cuda的都卸载掉。卸载完后重启,再运行安装程序,在检查兼容性完成后,先不要按下一步,右键我的电脑,进入管理;展开服务和应用程序,进入服务,找到***Windows Installer***,右键启动。启动完毕后再回到安装程序,选择自定义,下一步等待安装完毕。
- 好,然后解压cudnn,把里面的bin、include、lib里面的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 相应的文件夹中。
- 此时,这一步的安装基本完成。
2.下载python3.6并且安装;
3.升级pip;
4.win + R 进入命令行 pip install tensorflow-gpu --user;
5.TensorFlow-gpu版本安装完毕;
/-----------------------------------------------------------------------------------/
接下来说安装yolo,有点麻烦。
1.vs2017的修改;
vs2017要在安装程序中修改,在单个组件中选中vs2015的工具包(具体名称我忘了);
安装完以后,把C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\extras\visual_studio_integration\MSBuildExtensions 这个路径下的文件全部复制到C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\v140\BuildCustomizations
2.下载opencv3.4.0;
去官网下载opencv3.4.0的winpack,下载完后运行安装程序,解压到自己制定的路径。
我的路径:D:\OpenCvSetting\opencv3.4Origin。
然后右键我的电脑,属性,高级系统设置,进入环境变量,找到path,添加D:\OpenCvSetting\opencv3.4Origin\build\x64\vc14\bin,这个改为读者自己的路径,一下都是。然后重启一下吧。
3.下载并安装yolo;
读者自行百度,在GitHub下载darknet这个文件。解压后进入到build里面的darknet。
修改darknet.vcxproj这个文件。把里面的CUDA 10 (注意有空格)都替换为CUDA 9(注意有空格),共两处。
然后打开darknet.sln,选择无升级。版本改为Release x64。
在试图选择属性管理器,展开darknet,双击release x64,此时已经进入Release属性页,在常规中选择平台工具集–visual studio 2015(v140)
VC++目录–包含目录,添加D:\OpenCvSetting\opencv3.4Origin\build\include 库目录,添加D:\OpenCvSetting\opencv3.4Origin\build\x64\vc14\lib
展开C/C++,常规—附加包含目录,添加D:\OpenCvSetting\opencv3.4Origin\build\include
展开连接器,输入–附加依赖项,添加opencv_world340d
确定之后,F7等待完成 —祝你好运