数学表达式魔训_day2

1. 二元关系

老师的博客:数学表达式: 从恐惧到单挑 (4. 二元关系)

二元关系的定义

Let A \mathbf A A and B \mathbf B B be sets. Any R ⊆ A × B \mathbf R \subseteq \mathbf{A}\times\mathbf{B} RA×B is called a binary relation.

常见的二元关系举例:

  • A = B = N \mathbf{A} = \mathbf{B} = \mathbb{N} A=B=N,即均为自然数集,则 R = = { ( 0 , 0 ) , ( 1 , 1 ) , ( 2 , 2 ) , …   } \mathbf{R^=} = \{(0,0),(1,1),(2,2),\dots\} R=={(0,0),(1,1),(2,2),}
  • A = B = R \mathbf{A} = \mathbf{B} = \mathbb{R} A=B=R. 则 R < = { ( x , y ) ∈ R 2 ∣ x < y } \mathbf{R^<} = \{(x,y) \in \mathbb{R}^2\vert x<y\} R<={(x,y)R2x<y}. 在二维平面上,它表示 y = x y=x y=x 左上区域

二元关系的性质:

对于 A \mathbf{A} A 上的关系,即 R ⊆ A × A \mathbf{R} \subseteq \mathbf{A}\times\mathbf{A} RA×A.

  • 自反性:如果 ∀ x ∈ A \forall{x}\in\mathbf{A} xA,均有 ( x , x ) ∈ R (x,x)\in\mathbf{R} (x,x)R,则称 R \mathbf{R} R 具有自反性;
  • 对称性:如果 ∀ ( x , y ) ∈ R \forall{(x,y)}\in\mathbf{R} (x,y)R,均有 ( y , x ) ∈ R (y,x)\in\mathbf{R} (y,x)R,则称 R \mathbf{R} R 具有对称性;
  • 传递性:如果 ∀ ( x , y ) , ( y , z ) ∈ R \forall{(x,y),(y,z)}\in\mathbf{R} (x,y),(y,z)R,均有 ( x , z ) ∈ R (x,z)\in\mathbf{R} (x,z)R,则称 R \mathbf{R} R 具有传递性;

2. 作业

  1. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9},写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分.
    R = { ( 1 , 1 ) , ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 2 ) , ( 2 , 8 ) , ( 5 , 1 ) , ( 5 , 5 ) , ( 5 , 9 ) , ( 8 , 2 ) , ( 8 , 8 ) , ( 9 , 1 ) , ( 9 , 5 ) , ( 9 , 9 ) } \mathbf{R}=\{(1,1),(1,5),(1,9),(2,2),(2,8),(5,1),(5,5),(5,9),(8,2),(8,8),(9,1),(9,5),(9,9)\} R={(1,1),(1,5),(1,9),(2,2),(2,8),(5,1),(5,5),(5,9),(8,2),(8,8),(9,1),(9,5),(9,9)}
    P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P} = \{\{1,5,9\},\{2,8\}\} P={{1,5,9},{2,8}}

  2. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9},自己给定两个关系 R 1 \mathbf{R}_1 R1 R 2 \mathbf{R}_2 R2,并计算 R 2 ∘ R 1 \mathbf{R}_2\circ\mathbf{R}_1 R2R1 R 1 + \mathbf{R}_1^+ R1+ R 1 ∗ \mathbf{R}_1^* R1.
    R 1 = { ( a , b ) ∈ A × A ∣ a < b } \mathbf{R}_1=\{(a,b)\in\mathbf{A}\times \mathbf{A}\vert a<b\} R1={(a,b)A×Aa<b} R 2 = { ( a , b ) ∈ A × A ∣ a / 2 = b / 2 } \mathbf{R}_2=\{(a,b)\in\mathbf{A}\times \mathbf{A}\vert a/2=b/2\} R2={(a,b)A×Aa/2=b/2}
    R 1 = { ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 2 , 9 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 8 , 9 ) } \mathbf{R}_1 = \{(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9)\} R1={(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9)} R 2 = { ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 2 ) , ( 8 , 8 ) } \mathbf{R}_2 = \{(2,2),(2,8),(8,2),(8,8)\} R2={(2,2),(2,8),(8,2),(8,8)}
    R 2 ∘ R 1 = { ( 1 , 2 ) , ( 1 , 8 ) , ( 2 , 2 ) , ( 2 , 8 ) , ( 5 , 2 ) , ( 5 , 8 ) } \mathbf{R}_2\circ\mathbf{R}_1 = \{(1,2),(1,8),(2,2),(2,8),(5,2),(5,8)\} R2R1={(1,2),(1,8),(2,2),(2,8),(5,2),(5,8)}.
    R 1 + = ⋃ i = 1 ∣ A ∣ R i = R 1 ∪ R 2 ∪ R 3 ∪ R 4 ∪ R 5 = { ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 2 , 9 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 8 , 9 ) } \mathbf{R}_1^+ = \bigcup_{i=1}^{\vert\mathbf{A}\vert}\mathbf{R}^i = \mathbf R^1\cup\mathbf R^2\cup\mathbf R^3\cup\mathbf R^4\cup\mathbf R^5=\{(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9)\} R1+=i=1ARi=R1R2R3R4R5={(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9)}
    R 1 ∗ = R 1 + ∪ A 0 = { ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 2 , 9 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 8 , 9 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^*=\mathbf{R}_1^+\cup\mathbf{A}^0=\{(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9),(1,1),(2,2),(5,5),(8,8),(9,9)\} R1=R1+A0={(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9),(1,1),(2,2),(5,5),(8,8),(9,9)}

    R 1 = R = { ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 2 , 9 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 8 , 9 ) } \mathbf{R}^1 = \mathbf{R}= \{(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9)\} R1=R={(1,2),(1,5),(1,8),(1,9),(2,5),(2,8),(2,9),(5,8),(5,9),(8,9)}
    R 2 = R ∘ R = { ( 1 , 5 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 2 , 9 ) , ( 5 , 9 ) } \mathbf{R}^2 = \mathbf{R}\circ\mathbf{R}=\{(1,5),(1,8),(1,9),(2,8),(2,9),(5,9)\} R2=RR={(1,5),(1,8),(1,9),(2,8),(2,9),(5,9)}
    R 3 = R 2 ∘ R = { ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 9 ) } \mathbf{R}^3 = \mathbf{R}^2\circ\mathbf{R}=\{(1,8),(1,9),(2,9)\} R3=R2R={(1,8),(1,9),(2,9)}
    R 4 = R 3 ∘ R = { ( 1 , 9 ) } \mathbf{R}^4 = \mathbf{R}^3\circ\mathbf{R}=\{(1,9)\} R4=R3R={(1,9)}
    R 5 = R 4 ∘ R = ∅ \mathbf{R}^5 = \mathbf{R}^4\circ\mathbf{R}=\emptyset R5=R4R=
    注:这里的 R \mathbf{R} R 就是上边的关系 R 1 \mathbf{R}_1 R1

  3. 查阅粗糙集上下近似的定义并大致描述.

1982年波兰学者Z. Paw lak 提出了粗糙集理论——它是一种刻画不完整性和不确定性的数学工具,能有效地分析不精确,不一致(inconsistent)、不完整(incomplete) 等各种不完备的信息,还可以对数据进行分析和推理,从中发现隐含的知识,揭示潜在的规律。
粗糙集理论是建立在分类机制的基础上的,它将分类理解为在特定空间上的等价关系,而等价关系构成了对该空间的划分。粗糙集理论将知识理解为对数据的划分,每一被划分的集合称为概念。粗糙集理论的主要思想是利用已知的知识库,将不精确或不确定的知识用已知的知识库中的知识来(近似) 刻画

假设集合 A = { a , b , c , d } \mathbf{A} = \{a, b, c, d\} A={a,b,c,d},在精确集中可以确定 a , b , c , d a,b,c,d a,b,c,d 是集合 A \mathbf A A 的元素;但在粗糙集中无法确定某些元素是否一定属于某个集合,可能属于,也可能不属于。这就出现了不确定的集合,即用粗糙集对其表示。
对于某个确定属于粗糙集的集合 X \mathbf X X,下近似集是在那些所有的包含于X 的知识库中的集合中求交得到的,上近似则是将那些包含X的知识库中的集合求并得到的。

  1. 举例说明对函数的认识.
    我认为函数其实就是探讨输入和输出的关系,即是输入到输出的映射。函数的定义域和值域都是集合,且对定义域的任意一个数,在值域中都有唯一确定的数与之对应。在机器学习中,也有函数的存在。
    在回归问题中,比如通过以往的房价数据,预测未来的房价。在学习过程中,就是要去拟合这样的一个函数,以做出更好的预测。
  2. 自己给定一个矩阵并计算其各种范数.
    给定矩阵 X \mathbf X X

X = [ 1 0 2 − 1 ] \mathbf X = \begin{bmatrix}1 & 0\\2 & -1\end{bmatrix} X=[1201]

  • l 0 l_0 l0 范数: ∣ ∣ X ∣ ∣ 0 = 3 ||\mathbf X||_0=3 X0=3 (非零项的个数)
  • l 1 l_1 l1 范数: ∣ ∣ X ∣ ∣ 1 = 1 + 0 + 2 + 1 = 4 ||\mathbf X||_1=1+0+2+1=4 X1=1+0+2+1=4 (绝对值之和)
  • l 2 l_2 l2 范数: ∣ ∣ X ∣ ∣ 2 = 1 2 + 0 2 + 2 2 + ( − 1 ) 2 = 6 ||\mathbf X||_2=\sqrt{1^2+0^2+2^2+(-1)^2}=\sqrt 6 X2=12+02+22+(1)2 =6
    ∣ ∣ X ∣ ∣ 2 2 = 1 2 + 0 2 + 2 2 + ( − 1 ) 2 = 6 ||\mathbf X||_2^2={1^2+0^2+2^2+(-1)^2}=6 X22=12+02+22+(1)2=6 (平方和)
  • l ∞ l_\infty l 范数: ∣ ∣ X ∣ ∣ ∞ = 2 ||\mathbf X||_\infty=2 X=2
  1. 解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标
    min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \min\sum_{(i,j)\in\Omega}(f(\mathbf x_i,\mathbf t_j)-r_{ij})^2 min(i,j)Ω(f(xi,tj)rij)2 各符号及含义

x i \mathbf{x}_i xi 表示用户信息表 X = [ x 1 , … , x n ] T \mathbf{X}=[\mathbf x_1,\dots,\mathbf x_n]^\mathrm T X=[x1,,xn]T 中具体的某一个用户的信息; t j \mathbf{t}_j tj 表示商品信息表 T = [ t 1 , … , t n ] T \mathbf{T}=[\mathbf t1,\dots,\mathbf t_n]^\mathrm T T=[t1,,tn]T 中具体的某一个商品的信息; r i j r_{ij} rij 表示评分矩阵 R = ( r i j ) n × m \mathbf{R}=(r_{ij})_{n\times m} R=(rij)n×m中具体的某个评分,其取值范围为 { 0 , 1 , 2 , 3 , 4 , 5 } \{0,1,2,3,4,5\} {0,1,2,3,4,5} Ω \Omega Ω 为评分矩阵 R \mathbf{R} R 中非零元素对应位置的集合;函数 f : R d u × R d t → R f:R^{d_u}\times R^{d_t}\to R f:Rdu×RdtR d u d_u du 表示用户的属性数, d t d_t dt 表示商品的属性数。即要学习一个 f f f 用于商品的推荐,优化的目标是最小化训练集上的 MSE。即使得 f ( x i , t j ) f(\mathbf x_i,\mathbf t_j) f(xi,tj) r i j r_{ij} rij 的均方误差尽可能小。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值