如何使用wordnet词典,得到英文句子的同义句

文章介绍了如何利用Python的nltk库和WordNet来查找英文句子中单词的同义词,进而生成同义句。提供了两种方法,一种是随机选取同义词,另一种是选择与原词相似度最高的同义词。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

问题描述:

问题解决:

wordnet安装:

方式一:

思想:

代码实现:

方式二:

思想:

代码实现:


问题描述:

想要得到一个英文句子的同义句。可以通过从wordnet中查找同义词,替换对应的单词,从而得到完整的同义句。

问题解决:

wordnet安装:

首先需要先安装好wordnet,安装步骤如下:

首先安装nltk包--> 安装好之后,输入python命令,执行 import nltk --> 再安装wordnet, 执行命令nltk.download('wordnet')-->安装成功即可。

得到同义句的方式有两种:

方式一:

思想:

从wordnet中获取当前句子中每一个单词对应同义词列表中的随机一个单词,作为该单词的同义词。从而得到该句子对应的同义句。

代码实现:

# 随机返回同义词中的一个,作为同义词。
from nltk.corpus import wordnet
import random

def get_synonyms(word):
    synonyms = set()
    for syn in wordnet.synsets(word): # 查询给定单词的WordNet同义词集合(synset)
        for lemma in syn.lemmas(): 
            # 获取同义词集合syn中的所有词条(lemma)。一个同义词集合可以包含多个词条,每个词条代表一个具体的同义词。
            synonyms.add(lemma.name())
    return list(synonyms)

def replace_words(sentence):
    words = sentence.split()
    print("单词是:",words)
    new_sentences =  []
    for word in words:
        synonyms = get_synonyms(word)
        print("synonyms is :", synonyms)
        if synonyms:
            new_word  = random.choice(synonyms) # 随机选择同义词
            new_sentences.append(new_word)
        else:
            new_sentences.append(word)
    return ' '.join(new_sentences)

sentence = "We researched and found the best price at MacConnection . "
new_sentence = replace_words(sentence)
print(new_sentence)

方式二:

思想:

从wordnet中获取当前句子中每一个单词对应同义词列表中,与当前单词相似度最高的单词作为该单词的同义词,从而得到完整的同义句。

代码实现:

def get_synonyms(sentence):
    synonyms = []
    words = sentence.split()
    for word in words:
        max_similarity = 0.0
        best_synonyms = word
        synsets = wordnet.synsets(word)
        print("synsets", synsets)
        for synset in synsets:

            for lemma in synset.lemmas():
                similarity = synset.path_similarity(lemma.synset())
                if similarity is not None and similarity > max_similarity:
                    max_similarity = similarity
                    best_synonyms = lemma.name()
        synonyms.append(best_synonyms)
    return ' '.join(synonyms)

sentence = "we are family, and i like you !"
syn_sentence = get_synonyms(sentence)
print(syn_sentence)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薰珞婷紫小亭子

整理不易,多多鼓励~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值