计算机视觉两个入门数据集(mnist和fashion mnist)本地下载地址

1.计算机视觉经典数据集

1.mnist数据集

MNIST(Mixed National Institute of Standards andTechnology database)数据集大家可以说是耳熟能详。可以说是每个入门深度学习的人都会使用MNIST进行实验。作为领域内最早的一个大型数据集,MNIST于1998年由Yann LeCun等人设计构建。MNIST数据集包括60000个示例的训练集以及10000个示例的测试集,每个手写数字的大小均为28*28。在本书的前面一些章节,我们曾多次使用到了MNIST数据集。

MNIST数据集官网地址为http://yann.lecun.com/exdb/mnist/。

数据集本地下载地址:

链接:https://pan.baidu.com/s/16PBnJLzcj-3znWSbIHBzew 
提取码:hjzs 

MNIST在TensorFlow中可以直接导入使用。在TensorFlow 2.0中使用示例如代码所示。

# 导入mnist模块
from tensorflow.keras.datasets import mnist
# 导入数据
(x_train,y_train), (x_test, y_test) = mnist.load_data()
# 输出数据维度
print(x_train.shape,y_train.shape, x_test.shape, y_test.shape)


#输出结果
(60000, 28, 28) (60000,) (10000, 28, 28)(10000,)

可视化展示MNIST 0-9十个数字,如代码2所示,绘制结果如下图。

# 导入相关模块
import matplotlib.pyplot as plt
import numpy as np
# 指定绘图尺寸
plt.figure(figsize=(12,8))
# 绘制10个数字
for i in range(10):
    plt.subplot(2,5,i+1)
    plt.xticks([])
    plt.yticks([])
    img = x_train[y_train == i][0].reshape(28,28)
    plt.imshow(img, cmap=plt.cm.binary)

2.Fashion MNIST数据集

可能是见MNIST太烂大街了,德国的一家名为Zalando的时尚科技公司提供了Fashion-MNIST来作为MNIST数据集的替代数据集。Fashion MNIST包含了10种类别70000个不同时尚穿戴品的图像,整体数据结构上跟MNIST完全一致。每张图像的尺寸同样是28*28。

Fashion MNIST数据集地址为:

https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/。

数据集本地下载地址:

链接:https://pan.baidu.com/s/1FiMMylKIhJWyGzhkgO0b1g 
提取码:hjzk 

Fashion MNIST同样也可以在TensorFlow中直接导入。如代码所示。

# 导入fashion mnist模块
from tensorflow.keras.datasets import fashion_mnist
# 导入数据
(x_train,y_train), (x_test, y_test) = fashion_mnist.load_data()
# 输出数据维度
print(x_train.shape,y_train.shape, x_test.shape, y_test.shape)


#输出结果
(60000, 28, 28) (60000,) (10000, 28, 28)(10000,)

可视化展示Fashion MNIST 10种类别,如代码所示。绘制结果如图所示。

# 绘图尺寸
plt.figure(figsize=(12,8))
# 绘制10个示例
for i in range(10):
    plt.subplot(2,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    img = x_train[y_train == i][0].reshape(28,28)
    plt.imshow(x_train[i], cmap=plt.cm.binary)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值