Description
Given a square array of integers A, we want the minimum sum of a falling path through A.
A falling path starts at any element in the first row, and chooses one element from each row. The next row’s choice must be in a column that is different from the previous row’s column by at most one.
Constraints:
• 1 <= A.length == A[0].length <= 100
• -100 <= A[i][j] <= 100
Example
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12
Explanation:
The possible falling paths are:
• [1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
• [2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
• [3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
The falling path with the smallest sum is [1,4,7], so the answer is 12.
Submissions
首先根据给定二维数组A建一个左右各多加一列的新数组dp。因此数组中每个位置都可以从上一行获得三个相邻列的最小值。解题思路即到每个位置的最短路径,就是当前数值加上到达上面一行的三个相邻列的最小值。返回最后一行中最小值即可。
Python中float(‘inf’)表示正无穷
实现代码如下:
class Solution:
def minFallingPathSum(self, A: List[List[int]]) -> int:
row, col = len(A), len(A[0])
dp = [[0] * (col + 2) for _ in range(row)]
for i in range(row):
dp[i][0] = dp[i][-1] = float('inf')
for j in range(1, col + 1):
dp[i][j] = A[i][j-1]
for i in range(1, row):
for j in range(1, col + 1):
dp[i][j] = A[i][j-1] + min(dp[i - 1][j - 1], dp[i - 1][j], dp[i - 1][j + 1])
return min(dp[-1])