LeetCode-1314 Matrix Block Sum

Description

Given a m * n matrix mat and an integer K, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for i - K <= r <= i + K, j - K <= c <= j + K, and (r, c) is a valid position in the matrix.

Constraints:
• m == mat.length
• n == mat[i].length
• 1 <= m, n, K <= 100
• 1 <= mat[i][j] <= 100

Example

Example 1:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]

Example 2:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]

Submissions

根据题意可以理解为是一个区域前缀和的问题,所以首先求出矩阵的前缀和,然后根据题目要求,求出子数组的元素和。i - K <= r <= i + K, j - K <= c <= j + K是指以(i - K,j - K )为左上角,以( i + K,j + K)为右下角中间的所有子数组的和。

我们用dp[i][j]记录原矩阵从[0][0]到[i][j]的这个矩形区域的和,通过使用dp中的元素进行计算可以得到原矩阵中任意矩形区域的和。原矩阵中的点加减K得到的矩形框可能会超出原矩阵区域,所以要对矩形框设限,
r1=max(i-K,0)
c1=max(j-K,0)
r2=min(m-1,i+K)
c2=min(n-1,j+K)
此即为矩形框左上角点和右下角点的横纵坐标。

需要求和的原矩阵的矩形区域就相当于res[i][j]=dp[r2+1][c2+1]-dp[r2+1][c1]-dp[r1][c2+1]+dp[r1][c1],其中res[i][j]表示(i,j)位置的区域前缀和。

实现代码如下:

class Solution:
    def matrixBlockSum(self, mat: List[List[int]], K: int) -> List[List[int]]:
        m, n = len(mat), len(mat[0])
        dp = [[0] * (n+1) for _ in range(m+1)]
        res = [[0] *(n) for _ in range(m)]
        for i in range(1,m+1):
            for j in range(1,n+1):
                dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+mat[i-1][j-1]
        for i in range(m):
            for j in range(n):
                r1=max(i-K,0)
                c1=max(j-K,0)
                r2=min(m-1,i+K)
                c2=min(n-1,j+K)
                res[i][j]=dp[r2+1][c2+1]-dp[r2+1][c1]-dp[r1][c2+1]+dp[r1][c1]
        return res

参考

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值