724. Find Pivot Index

https://leetcode.com/problems/find-pivot-index/

Given an array of integers nums, write a method that returns the "pivot" index of this array.

We define the pivot index as the index where the sum of all the numbers to the left of the index is equal to the sum of all the numbers to the right of the index.

If no such index exists, we should return -1. If there are multiple pivot indexes, you should return the left-most pivot index.

Example 1:

Input: nums = [1,7,3,6,5,6]
Output: 3
Explanation:
The sum of the numbers to the left of index 3 (nums[3] = 6) is equal to the sum of numbers to the right of index 3.
Also, 3 is the first index where this occurs.

Example 2:

Input: nums = [1,2,3]
Output: -1
Explanation:
There is no index that satisfies the conditions in the problem statement.

Constraints:

  • The length of nums will be in the range [0, 10000].
  • Each element nums[i] will be an integer in the range [-1000, 1000].

算法思路:

思路很简单,从左到右枚举每一个index,如果出现sumOf[0~index) == sumOf(index~n-1],返回index即可,这里的问题在于精简sumOf的计算,暴力解法时间复杂度是O(n^2),使用动态规划使时间复杂度降为O(n)。

//O(n) O(n)
class Solution {
public:
    int pivotIndex(vector<int>& nums) {
        int n = nums.size();
        if(n == 0) return -1;
        vector<int> dp(n, 0);
        dp[0] = nums[0];
        for(int i = 1; i < n; i++) dp[i] = dp[i - 1] + nums[i];
        for(int i = 0; i < n; i++) if(dp[i] - nums[i] == dp[n - 1] - dp[i]) return i;
        return -1;
    }
};

考虑到上述解法,使用了O(n)的空间复杂度,如果考虑类似双指针的技术,可以将空间复杂度降为O(1)。

class Solution {
public:
    int pivotIndex(vector<int>& nums) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        int leftSum = 0; int rightSum = sum;
        for(int i = 0; i < nums.size(); i++) {
            rightSum -= nums[i];
            if(leftSum == rightSum) return i;
            leftSum += nums[i];
        }
        return -1;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值