NeuroImage:对情绪表现的快速接近—回避反应反映了基于价值的决策:来自脑电图研究的神经证据

​《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》

快速而准确地回应他人的非语言信号(如他们的情感表达的能力)构成了社会适应的基石之一。社会情绪信号的快速动作倾向是否完全依赖于刺激诱发的决策前运动偏向,抑或是也可以参与目标导向的(决策)过程涉及动作选择之间的仲裁,这是有争议的。本研究中,研究人员使用漂移扩散模型(DDM)和脑电图(EEG)来研究威胁信号个体(愤怒或恐惧)对自发接近—回避决策的影响。研究发现,受试者更多地选择避开愤怒的人,而不是可怕的人,这种影响在情绪强烈的人身上表现得更强。扩散模型表明,这种选择模式是通过基于价值的证据积累过程来解释的,这表明行动选项之间存在着积极的竞争。研究人员发现,在运动开始之前(200ms),额叶中段电极簇(来源于眼眶和腹内侧额叶皮质)的脑电活动在选择和未选择的选项之间存在差异。此外,在反馈决策的过程中,价值差异也对脑电信号进行了调制。综上所述,本研究结果支持了隐式目标导向机制在对社会情绪信号的接近—回避反应中重要的影响。

1、背景

人的情绪面部表情向他人告知其情感状态和潜在的行为意图,向接受者传达行动要求。相应地,感知情感表达对观察者的行为有直接影响,例如产生接近或避免的动作倾向。这种情绪化的行为倾向被认为有助于社会互动和适应行为。尽管它们很重要,但情绪展示接近—回避倾向产生的神经认知机制尚未完全理解。一方面,由于预先存在的刺激—反应关联,行动倾向可能存在于通过感知的情绪显示的某些特征(例如,愤怒面孔的皱眉)直接激活反应表征(例如,回避)。在这种情况下,感知到的情绪表现会自动加强该运动表征,这种刺激诱发的预先决策偏差将影响最终的动作选择。另一方面,关于动物防御行为和人类接近—回避的融合研究表明,行动倾向可能不总是由决策前的情绪刺激自动引发的,也可能是目标导向过程的结果。

本研究的目标是阐明行为结果观察模式背后的神经认知机制。在本研究中,观察到的行为可能来自(1)决策前偏差,即积累过程的起点;(2)决策过程本身,即证据积累的速度;(3)两者兼而有之。研究人员使用EEG的高时间分辨率来评估不同动作选择的价值差异是否在大脑中表现出来。因此,在接近/避免的倾向遵循基于价值的决定的情况下,这种价值差异的神经编码是可以预期的。

2、材料与方法

2.1 被试

26名受试者,其中女性14名,平均年龄23.7±3.4岁(年龄范围19~34岁)。所有参与这项研究的受试者都没有神经或精神疾病的病史。

2.2 社交自由选择任务

社交自由选择任务(图1a)改编自该实验室之前的一项研究。受试者看到的场景是一个有四个座位的等候室,中间的两个座位被两个人(一对女性或男性)占据,而外部的座位是空的。每个场景都是由一个模板女性或男性半场景(照片描绘一名女性或一名男性坐在一个空座位旁边)并列在其镜像版本上合成的,面孔在其上叠加。这对演员中的一个总是表现出中立的表情,而另一个则表现出中立、愤怒或恐惧的表情。我们使用了10对固定的身份(5名男性,5名女性),这些身份与面部可信度和威胁特征相匹配。面孔在情绪(中性、愤怒或恐惧的表情)和强度上各不相同(从中性到情绪表达产生了4个级别的愤怒和恐惧)。

受试者被要求指出他们想坐的位置,在整个试验过程中保持对展示在两张脸之间的十字架的注视。受试者必须左击鼠标,将其移到所选座位释放。
在这里插入图片描述
图1 任务和行为结果。(a)社会自由选择任务。(b)行为结果。左图:黑点和垂直线表示每个受试者的平均回避回答比例的平均值和受试者内部的置信区间(较小的彩色圆点)。灰线连接不同条件下受试者的平均值。右图:黑点和垂直线代表每个受试者的中位数RTS的中位数和置信区间,集中在受试者的平均值上,以消除受试者之间的变异性(较小的彩色点)。灰线连接不同条件下受试者的中位数。

2.3 流程

受试者坐在一个灯光昏暗、声音减弱的房间里,被给予了关于社交自由选择任务的说明,还被告知在展示图片时避免眨眼,并保持注视。在完成实验之前,所有受试者都经历了训练模块,直到准确率达到至少60%。在训练和任务期间,他们都被告知在每个模块结束时正确执行的百分比,并被要求最大限度地提高这一百分比。

2.4 EEG记录和处理

采用带活性电极的BioSemi头帽,用CMS/DRL参比电极连续记录64个头皮部位的脑电。脑电信号用ActiveTwo AD盒放大器(BioSemi)放大,在线低通滤波(250 Hz),以1000 Hz数字化。在EEGlab中对EEG信号进行预处理。信号离线平均参考,以512 Hz下采样,带通滤波在1至32 Hz之间,并从刺激开始前2s至刺激开始后3s计时。如果包含肌肉伪影,则肉眼检查并丢弃,并插入噪声电极,平均相邻电极。最后,通过手动移除相应的ICA组件来纠正眨眼伪影。使用Brainstorm进行来源分析。

2.5 统计分析:行为学数据

2.5.1 线性模型

计算每个受试者的中位点击时间(从现在开始的“反应时间RTs”)和移动时间,然后进行对数变换以使它们的分布正态化。反应的编码如下:如果受试者坐在远离表现出与威胁相关的面部表情的椅子上,反应被编码为“回避”;如果受试者坐在靠近表现出与威胁相关的面部表情的椅子上,那么反应就被编码为“接近”。为了便于DDM模型拟合,强度因子被重新编码在两个水平上(即低强度=水平1+水平2,高强度=水平3+水平4),对于情绪和强度之间相互作用的每种情况,每个受试者至少有111次试验。

首先,对于选择比例,以情绪(愤怒、恐惧)和强度(高、低)作为受试者内部因素,对回避反应的平均比例进行重复测量方差分析。对于RTs和移动时间,每个受试者的对数转换中值的重复测量ANOVAS被拟合,并将情绪、强度和侧面(回避、接近)作为受试者内部因素。

2.5.2 漂移扩散模型

研究人员提出,在允许我们接近或避免的动作不是预先确定的情况下,对显著刺激源的早发现可以使得对接近或避免的快速动作处置(决策前的运动偏差),这由模型的z参数捕捉到。

在这一假设的基础上,运行了四个模型来区分决策前假设和决策假设:(1)零模型,其中所有参数都不随兴趣因素(情感和强度)而变化;(2)只允许起点(z)作为兴趣因素的函数而变化的模型;(3)只允许漂移率(v)作为兴趣因素的函数而变化的模型;(4) z和v都被允许作为我们感兴趣的因素的函数而变化的模型。由于每个条件的试验数量适中,研究人员以几种方式尽可能地简化了模型:模型的阈值与回避(上限)和接近响应(下限)相关;此外,漂移率和阈值的试验间变量被固定为零。

参数估计采用最小范数优化法。提取每个受试者的Akaike’s信息标准(AIC),并计算每个模型的平均AIC,以便进行模型比较。除了平均AIC可能受到受试者异质性的影响外,研究人员还依赖于分层贝叶斯模型选择标准,其中模型是随机变量。最后,使用重复测量方差分析对获胜的漂移扩散模型的参数估计进行了检验。

2.6 统计分析:EEG数据

对于脑电分析,研究人员使用了先前在该实验室中验证的通用线性模型方法(GLM)。简而言之,该方法在于拟合单次试验回归模型,以便评估每个受试者在每个电极和时间点的EEG信号中的实验因素的编码情况。

对于每个受试者,为了控制运动对EEG活动的影响,首先计算由运动参数(即RTs和运动次数)预测的EEG活动的残差,对其进行对数变换,使其分布正规化,并跨条件进行z评分。

为了测试所选动作选项与未选动作选项之间的价值差异是否在大脑中表现出来,研究人员根据所显示的情绪的强度、其在场景中的表现以及受试者的反应,建立了一个“价值差异”回归变量。为此,靠近威胁性个体的座位被认为是惩罚选项,其负值与威胁性表情的情绪强度水平成比例(编码为0.5=1级,1.5=2级,2.5=3级,3.5=4级)。另一个座位,靠近中立的个人,将有一个非负值(即,零)。因此,例如,如果受试者决定坐在远离表达愤怒的人的第3级(即回避反应),她的选择的价值差异将对应于已选择的选项-未选择的选项=0-(-2.5)=+2.5,因此是正值差异。这样的计算直接遵循了我们的假设,即情绪在改变竞争行动计划的各自价值方面发挥了作用。

2.7 统计分析:EEG—行为学

研究人员进一步测试了不同受试者的脑电编码价值差异是否与证据积累的质量有关。因此,在刺激锁定和反馈锁定分析中,重要簇中的脑电活动与高强度和低强度试验之间漂移率的差异相关。此外,由于非决策阶段的持续时间可能会影响比较备选方案价值所需时间的可用性,研究人员还测试了t0与脑电编码之间的相关性。

3、结果

3.1 行为学数据

3.1.1 线性模型

重复测量选择比例的方差分析(图1b)突出了情绪的主效应[F(1,25)=13.77,p=.001,η2G=0.10],以及强度的主效应[F(1,25)=25.02,p<.001,η2G =0.17],表明因愤怒产生的“回避”反应大于因恐惧。两因素交互作用也很显著[F(1,25)=16.06,p<0.001,η2G =0.06]。配对t检验显示,愤怒试验中的高情绪强度与低情绪强度之间的差异更大[t(25)=5.36,p<0.001,d=1.09,dCI=0.57-1.60],这表明情绪强度对愤怒的影响比恐惧更大。

重复测量方差分析对RT(图1b)显示了强度的主效应[F(1,25)=5.38,p=.029,η2G =0.0003],进一步表现为强度与选择之间的交互作用,[F(1,25)=14.37,p<.001,η2G =0.0005]。当受试者选择回避情绪个体时,高情绪强度和低情绪强度之间的差异很小,但有显著性意义,[t(25)=3.78,p<0.001,d=0.08,dCI=0.04-0.12],当受试者决定接近时,差异不显著,[t(25)=−0.87,p=.395,d=−0.01,dCI=−0.04-0.02],这表明情绪强度水平只影响回避反应的反应时间,而不是接近反应。

主效应或交互作用对运动时间无显著影响(F均<1.38,P均>0.251)。

3.1.2 漂移扩散模型

平均AIC表明,总体上,只有漂移率(v)随情绪和强度因素变化的模型(模型3,平均AIC=−450.34)比只有决策前偏差(起始点z)随情绪和强度因素变化的模型(模型2,平均AIC=−447.68)更贴合数据。更重要的是,该模型与空白模型(模型1,平均AIC=−447.79)和起始点和漂移率随情绪和强度因子变化的模型(模型4,平均AIC=−446.98)相比,在数据上也有更好的拟合。最重要的是,模型3与模型2相比的超越概率为0.9997,模型4与模型4的超越概率为1,模型1与模型1的超越概率为0.6603。最后,还从视觉上评估了获胜模型(模型3)的适合性,确保它可以再现数据的主要特征。

从获胜模型3(图2)中提取的漂移率参数的重复测量方差分析突出了显著的情绪主效应,表明愤怒比恐惧对回避—接近反应的证据积累更高。强度主效应表明,随着情绪强度的增加,回避—接近反应的证据积累增加。情绪和强度之间也出现了显著的相互作用,表明强度对证据积累的影响更强。
在这里插入图片描述
图2 漂移率。黑点和垂直线代表每个受试者平均的平均值和受试者内的置信区间(较小的彩色点)。较细的灰色线条将受试者“低”和“高”情绪强度条件下的值连接起来。

3.2 EEG数据

3.2.1 愤怒试验:价值编码

对愤怒试验的刺激锁定和反馈锁定脑电编码值差的β进行聚类分析,发现存在显著的负值中心额簇(图3)。在相同的时间窗和电极上,愤怒组和恐惧组的平均β系数有显著差异。来源分析表明,这种效应主要与激活双侧眶额叶皮质(OFC)和左腹内侧前额叶皮质(vmPFC)有关。
在这里插入图片描述
图3 愤怒试验中的价值编码。图的上半部分表示刺激锁定分析的结果,下半部分表示反馈锁定分析的结果。对于顶部和底部,都显示了愤怒试验的重要群集(红色)的拓扑图(GLM参数估计随时间的平均值)和时间进程(传感器上的平均值,均值±Se),以及相应的恐惧试验的(不重要的)参数估计(蓝色)。条形图(均值±Se)显示了同一簇中愤怒和恐惧之间的平均年龄和传感器。

3.2.2 恐惧试验:价值编码

无论是刺激锁定还是反馈锁定分析都没有显示出编码恐惧试验的值差异的显著聚类。

3.3 EEG—行为学

相关分析表明,在针对愤怒试验的编码显著簇的值差异上,平均刺激锁定型脑电活动与非判定时间呈正相关(图4)。换句话说,刺激编码(和/或反应准备)时间较长的受试者早期脑电编码值减少。高强度和低强度试验之间漂移率的差异没有相关性。

另一方面,反馈锁定的脑电簇与漂移率的高低强度差呈负相关。换言之,高强度愤怒试验相对于低强度愤怒试验积累的证据越多,在反应终止后反馈过程中值差异的脑电编码越强。反馈锁定活动与非决策时间没有相关性。
在这里插入图片描述
图4 愤怒试验的EEG-DDM相关性。在y轴上,对于每个受试者,在针对值编码的刺激锁定(第一行)和反馈锁定(第二行)群集中表示平均。x轴表示高和低情绪强度试验之间漂移率的差异(左列)和非决策时间(t0;右列)。

4、讨论

本研究的目的是在现实环境中提供对自发接近/回避决策背后的认知和神经机制的精确理解,在存在与威胁相关的信号(愤怒或恐惧的个体)时提供相互竞争的行动目标。本研究的结果有三个方面。首先,当有明确的威胁性(愤怒)和强烈的情绪表现时,受试者选择避免的频率更高。其次,受试者的选择是由基于价值的证据积累过程解释的,而不是决策前的偏见。第三,对于明确的威胁信号愤怒显示,在刺激呈现和动作启动之间观察到选择的和未选择的动作选项之间的值差异的神经编码。

虽然愤怒和恐惧的表现都是负向的,但它们的社会意义不同,因此它们对接受者的行动要求也不同。愤怒的表情是迫在眉睫的言语或身体攻击的明确信号,这在大多数情况下会导致回避。相比之下,恐惧的表达既意味着潜在危险的存在,也意味着需要帮助,因此在避免和接近决定方面更加含糊。研究人员认为,上述威胁相关表达对当事人接近/回避决策的影响是通过改变每个可用行动选项的期望值来调节的。

由于多个认知过程可能导致相似的受试者表现模式,研究人员将漂移扩散模型拟合到受试者选择行为和RTs。我们发现,当受试者自发地决定避免(与接近相比)个人表现愤怒(与恐惧相比)时,尤其是在高情绪强度时,证据积累的速度更快,即价值估计更高。本研究的结果支持了价值比较过程在有威胁性的面前推动接近/回避决策中的作用。本研究表明环境中的情感表现在行动选择之间基于价值的快速仲裁中起着重要作用。值得注意的是,捕捉刺激编码和响应执行的非决策时间参数与早期值差异信号之间的负相关表明,受试者处理场景和准备响应花费的时间越长,他们的值比较过程的效率就越低。这意味着,尽管内隐决策过程非常迅速,但仍然需要一定的认知和时间资源。

最后,与假设一致的是,坐在远离愤怒的人的位置是非常理想的结果,选择和未选择的选项之间的值差异在选择反馈后大约200ms左右调制了EEG信号。此外,与低强度的愤怒表情相比,受试者的决策过程效率越高(即证据积累率越高),他们在反馈过程中对价值差异的神经编码就越强。这种效应来源于扣带回后部皮质和vmPFC/OFC。选择的预测结果与其实际结果越匹配,vmPFC就越活跃。

5、结论

总体而言,本研究支持这样的观点,即情绪的接近/回避倾向至少在一定程度上取决于内隐的基于价值的决定,情绪和行动之间的关系超越了简单的刺激驱动的决策前反应。从理论上讲,基于情绪的价值归因过程可以非常迅速地影响行动选择,可能还会影响外部意识。这一事实强化了这样一个观点,即我们与他人互动的隐含动机、目标和期望可能会对我们如何自发地操控社会情绪环境产生深远的影响。

注:解读不易,请多多转发支持,您的每一次转发是对我们最好的支持!本文原文及附加材料,请添加赵老师微信索要(微信号:15560177218)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值