丹麦哥本哈根大学研究团队系统比较了针对初级运动皮层的TMS-EEG研究

摘要经颅磁刺激(TMS)触发时间锁定的皮层活动,该活动可通过脑电图(EEG)记录下来。经颅诱发电位(TEPs)被广泛用于探测大脑对 TMS 的反应。在此,我们系统地回顾了 137 项已发表的实验,这些实验研究了健康个体中 TMS 对人类初级运动皮层(M1)的诱发电位,以探究方法选择的影响。我们仔细审查了常见的方法选择,并评估了它们在已发表论文中的报告一致性。我们从报告的 TEP 中提取振幅和潜伏期,并使用不同的方法比较研究之间特定的 TEP 峰值和成分。方法学细节的报告总体上是充分的,但超过 25% 的纳入实验缺少关于 TMS 设置以及 EEG 数据记录和预处理的一些相关信息。已发表的 TEP 潜伏期和振幅证实了刺激 M1 后 “典型” 的 TEP 波形,包括不同的 N15、P30、N45、P60、N100 和 P180 峰值。然而,研究之间的振幅变化很明显。较高的刺激强度与总体上较大的 TEP 振幅相关。与无或被动掩蔽相比,TMS 期间的主动噪声掩蔽通常会导致较低的 TEP 振幅,但不会特别影响那些与长潜伏期感觉处理相关的 TEP 峰值。实施独立成分分析(ICA)来去除伪影的研究通常报告较低的 TEP 幅度。总之,未来的 TEP 研究可以在报告实践的某些方面进行改进,以实现可重复性。包括 TMS 强度、噪声掩蔽或 ICA 的使用在内的方法选择会导致报告的 TEP 振幅出现系统性差异。有必要进一步研究这些方法和其他方法因素的重要性及其相互作用。

1. 引言

经颅磁刺激(TMS)通过突触传递在皮层主细胞中诱导同步活动,导致动作电位的产生和神经活动通过连接的网络传播。脑电图(EEG)记录可以捕捉 TMS 在皮层主细胞中诱发的活动,因为这些细胞由于突触后电位引起的同步极化有助于产生可以在头皮上检测到的电场。TMS 产生的时间锁定活动可以在平均脑电图中作为经颅诱发电位(TEPs)被追踪到,这些电位具有与刺激时间锁定的特征性正负偏转(即峰值)。TEP 是一种复合信号,反映了局部和远程皮层对 TMS 反应的混合,为高时间分辨率下的人类皮层反应性和连接性提供了有价值的见解。

自首批研究证明同时进行 TMS 和 EEG 的可能性以来,结合TMS 和 EEG 记录的研究数量稳步增加。这种方法的普及和可用性的提高为深入了解 TEP 的潜在生理学机制,以及 TMS 如何 “参与” 大脑活动铺平了道路。这也可能增加 TMS-EEG 作为一种工具的实用性,不仅在研究领域,而且在临床实践中。然而,这也需要在数据采集、预处理和分析方面制定明确的最佳实践指南和标准。这是至关重要的,因为特定数据采集、预处理和分析方法的选择最终可能会影响所报告的 TEP,从而影响可以得出的生理学见解。例如,最近的研究表明,TMS 后的较晚 TEP 峰值(>60 毫秒)可能会受到刺激引起的感觉共激活的二次处理的干扰(例如,来自听觉和躯体感觉输入),并且这种效应可以通过使用噪声掩蔽来减少。研究还表明,采用不同的 TMS-EEG 数据预处理策略可能会导致明显不同的 TEP。这些例子表明,研究人员在计划、执行和分析 TMS-EEG 实验时面临的丰富的方法学自由度会影响实验结果。然而,目前缺乏对各种方法选择对 TEP 的使用和影响的全面概述。理解方法选择的影响的前提是它们得到充分的报告。然而,与TMS-EEG 研究相关的大量参数空间可能导致某些方法学细节的遗漏,这是不幸的。

许多 TEP 研究主要通过靶向手部代表来研究初级运动皮层(M1)的皮层反应特征。对 M1 的兴趣可以通过以下事实来解释:由于其位置相对较浅,TMS 很容易到达 M1,并且当刺激强度超过静息运动阈值时,TMS 对 M1 的刺激会在对侧肢体肌肉中诱发运动诱发电位(MEPs)。对 M1 的单次 TMS 脉冲会产生持续约300 毫秒的 TEP 反应,具有特征性的负向和正向偏转序列,包括 N15、P30、N45、P60、N100、P180 和 N280 峰值。

本系统综述的目的是对已发表的针对 M1 的 TMS-EEG 论文中使用的方法以及这些方法如何影响 TEP 进行系统和全面的概述。我们首先检查先前发表的论文中方法报告的严谨程度。然后,我们说明该领域已发表研究之间方法选择的可变性以及所使用的方法如何随时间变化。最后,我们概述所选方法如何影响所报告的 TEP 的各种特征。我们专注于在健康人类中进行的 TMS-EEG 研究,并将系统综述限制在源于 M1 刺激的原始数据的研究上。

2. 方法

2.1 搜索策略

使用 PubMed 和 Web of Science 数据库进行搜索来确定已发表的研究。搜索于 2023 年 1 月 10 日进行。使用了以下搜索词的组合:“TMS-EEG”、“TMS”、“脑电图”、“EEG”、“运动皮层”、“初级运动皮层”、“M1”。使用 Mendeley(v1.19.8)软件算法和目视检查去除重复项后检索文章。

2.2 文章筛选和选择

三位作者(MMB、MH 和 LM)独立进行摘要和全文的筛选。如果研究符合以下条件,则将其纳入:(1)经过同行评审且为英文;(2)包括没有诊断出神经或精神障碍的成年参与者;(3)报告了对 M1 的单脉冲 TMS 的时域波形响应的原始变体(即 TEP、局部平均场功率(LMFP)、全局平均场功率(GMFP)、蝴蝶图或类似物)。在审查文章后,举行了一次共识会议,比较结果,并决定哪些文章可以纳入。在全文审查过程中,在检索到的文章中确定了在初始搜索中未发现的其他出版物,如果它们符合纳入标准,则将其添加到符合条件的文章列表中。

2.3 数据提取

三位作者(MMB、MH 和 LM)独立进行研究的数据提取和编码。从纳入的全文中提取了各种方法学变量。这包括与研究样本相关的变量(例如,参与者数量及其年龄)、TMS 刺激(例如,脉冲数量、脉冲波形类型和刺激强度)、实验设置(例如,噪声掩蔽或假刺激的使用)、EEG 数据采集(例如,放大器类型以及电极数量和类型)、EEG 预处理(例如,滤波器和 ICA)和数据报告(例如,图的时间窗口、报告的电极)。如果论文的全文或支持信息中未明确报告方法学变量的信息,则将其标记为 “未报告”。请注意,一些方法学变量随后被进一步细分,以减少层次数量。例如,对于 TMS 强度,我们根据使用的各种强度相对于静息运动阈值创建了三个类别(阈下、阈值和阈上刺激)。

为了概述我们纳入的所有文章的常见方法选择的潜在后果,我们使用网络应用程序 WebPlotDigitizer从以前发表的论文的图中提取了典型 TEP 峰值(N15、P30、N45、P60、N100、P180、N280)的潜伏期和振幅。WebPlotDigitizer 能够以高度有效和可靠的方式从数据可视化图像中提取数值数据。采用以下方法:将纳入研究的图裁剪并导入 WebPlotDigitizer。然后校准 x 轴和 y 轴,并在通常指定的感兴趣时间窗口内的清晰峰值处(N15:10-20 毫秒,P30:20-40 毫秒,N45:40-55 毫秒,P60:50-70 毫秒,N100:70-150毫秒,P180:150-240 毫秒,N280:240-350 毫秒)或尽可能接近该时间窗口的中心值处提取值,例如,P30 峰值在 30 毫秒处。此方法在图 1 中以视觉方式展示。

图片

图1 TEP 数据提取方法

2.4 数据可视化和分析

为了概述报告方法的一致性,我们可视化了报告(或未报告)提取的方法学变量的研究百分比。由于某些方法嵌套在另一些方法中(例如,关于特定算法和独立成分分析(ICA)轮数的信息取决于是否进行 ICA),我们添加了每个变量符合条件的研究数量。我们还通过绘制使用特定方法的研究百分比的饼形图来可视化常见的方法选择。请注意,这些图包含在去除特定变量信息缺失的研究后可用的信息。为了比较方法选择对 TEP 波形的影响,我们专注于一组方法学变量以降低维度,包括刺激强度、噪声掩蔽的使用和ICA 的使用。这些变量被选择是因为它们代表了研究人员在计划、执行和分析 TMS-EEG 实验时做出的关键决策。此外,它们代表了在研究中相当常见的报告变量。为了直观显示所使用的方法如何影响 TEP 波形,我们按类别(例如,刺激强度:阈下、RMT 或阈上刺激)绘制了每个 TEP 峰值的提取潜伏期和振幅,并使用 R 中的 “geom_smooth” 函数在观察值之间拟合局部估计散点图平滑(LOESS)回归线。计算研究之间的平均 TEP 峰值振幅以显示所使用的方法如何影响特定的 TEP 峰值。此外,计算 N15-P30 和 N100-P180 复合体的峰间振幅,以获得反映单个 TMS 脉冲的早期(N15-P30)和晚期(N100-P180)TEP 反应幅度的测量值(图 1)。为此,我们排除了两项报告来自刺激对侧半球的 TEP 数据的研究。使用单向 ANOVA 和未配对 t 检验或当模型假设不满足时使用等效的非参数替代方法进行类别之间的统计比较。统计检验的 P 值进行 Bonferroni 校正。上述程序仅对报告 TEP 且峰值潜伏期和振幅可提取的研究进行(即,报告 LMFPs 或 GMFPs 的研究不包括在本分析中)。最后,我们使用平行集图来可视化分类方法选择之间的潜在依赖关系。

图片

图2 研究纳入流程图

3. 结果

3.1 数据库搜索和文章选择

总共筛选了 1729 篇论文以去除重复项,并通过标题和摘要进行筛选。总共排除了 1484 项研究,剩下 245 篇论文进行全文筛选。总共 121 项研究因不符合纳入标准而被排除。剩余的 124 项研究(报告了 137 项不同的实验,涉及 1892 名受试者)被纳入系统综述,并进入定性和定量总结。选择过程的流程图如图2 所示。

3.2 已发表 TMS-EEG 研究中的方法报告

已发表的 TMS-EEG 研究中,方法学变量的报告频率存在很大差异。图 3 总结了六个类别的方法学变量的报告频率:研究人口统计学、TMS 参数、实验设置、EEG 采集、EEG预处理和数据报告。

关于样本人口统计学(例如,参与者数量、性别、年龄)、实验设置(例如,听觉掩蔽、实验状态、假对照)和数据报告(例如,时间窗口、EEG 电极、EEG 读数)的信息在超过90% 的纳入研究中提供(图 3A)。

具体就 TMS 方法而言,超过 90% 的研究描述了每个 TEP 条件下的 TMS 脉冲数量、连续 TMS 刺激的时间、刺激部位以及 TMS 强度是如何确定的。然而,其他关于 TMS 参数的相关信息在不到 75% 的纳入研究中被报告,例如感应电流方向、脉冲持续时间和充电延迟(图 3A)。例如,关于在线圈或大脑中感应电流方向的信息在大约 50% 的研究中仅被明确提及,在 72% 的已发表研究中只能从提供的信息中推断出来。

图片

图3 已发表的 TMS-EEG 研究中的方法报告

与 EEG 数据采集相关的细节,包括列出电极数量、采样率、带通滤波器设置和 EEG 设备的制造商,在超过 90% 的纳入研究中被报告。另一方面,关于记录电极的类型和位置以及记录软件的信息在不到 75% 的研究中被报告(图 3A)。

EEG 数据预处理相关程序的报告水平也有所不同。例如,用于离线滤波、重新参考和 TMS 脉冲伪影去除的高通和低通截止频率在超过 90% 的出版物中被指定。另一方面,只有 51% 的纳入研究报告了去除的时期数量,只有 58% 的已发表研究说明了为什么这些时期被去除。此外,只有 30% 的使用 ICA 的 TEP 研究报告了去除了多少独立成分,只有 60% 的研究披露了去除独立成分的标准(图 3A)。

当综合考虑所有方法学变量时,线性回归显示,报告的方法学变量的百分比总体上随着年份的增加而增加(图 3B)。

图片

图4 常见方法选择及其随时间的发展

3.3 常见方法选择和随时间的趋势

已发表的 TMS-EEG 研究使用了大量不同的方法。关于研究样本,纳入的 TMS-EEG 研究的中位数为 12 人(图 4A)。只有八项研究的样本量超过 25 人,这些研究中的参与者数量在 30 到 51 人之间。大多数研究检查的是年轻成年人。报告的平均年龄中位数为 28 岁(范围:21.0-77.8 岁),报告的男性与女性比例中位数约为 3:2。大多数研究在受试者休息时进行(88%),只有少数研究探索了基于任务的 TEP(12%),而参与者执行运动(53%)或认知(47%)任务。

关于 TMS 设置的方法选择在研究之间差异很大。每个 TEP 条件的刺激中位数为 100,但许多研究使用的 TMS 试验数量远低于或高于此(图 4A)。两个连续 TMS 脉冲之间的中位刺激间隔(ISI)为 4.75 秒,80% 的纳入研究使用了随机 ISI。TMS-EEG 研究几乎同样频繁地使用单相和双相脉冲波形。无论波形如何,96% 的研究报告了 M1 中感应电流方向,TMS 脉冲的最有效相位是从后向前(PA)方向诱导的。大多数 TMS-EEG 研究根据个体静息运动阈值调整刺激强度(85%),但不同研究的 TMS 强度有所不同。82% 的纳入论文仅使用单一 TMS 强度,而其余 18% 使用多个TMS 强度来研究刺激 - 反应关系。74% 的研究包括高于静息运动阈值(RMT)的阈上 TMS 强度,36% 的研究包括低于运动阈值的强度,26% 的研究包括与个体 RMT 匹配的TMS 强度。肉眼观察表明,本节中提到的方法学变量在其使用上没有显示出随时间的系统性变化(图 4B)。

所有纳入研究中,78% 的研究使用了掩蔽程序来最小化放电线圈产生的声音对听觉的共刺激影响(图 4B),然而,不同研究的掩蔽程序有所不同(图 4B)。“主动” 噪声掩蔽涉及通过耳塞或耳机播放掩蔽声音,如白色或彩色噪声,比使用耳塞或耳罩的 “被动” 掩蔽更常用(77% 对 23%)。23% 的研究避免了线圈与电极的直接接触,以减少声音的骨传导和振动的躯体感觉共刺激,方法是在线圈和电极之间放置一层泡沫(74%)或塑料(26%)。

相对较少使用假 TMS 条件来解释感觉处理的潜在混淆效应(24%)。大多数使用的假协议包括在线圈和头部之间引入介质(如空气或木头)、倾斜刺激线圈、刺激肩部以及各种 “真实” 的假条件。虽然前两种假协议主要关注模拟 TMS 的听觉输入,但后两种假协议旨在模拟与刺激相关的多感觉体验。然而,只有 7% 的研究报告了 TMS 引起的听觉和躯体感觉体验的感知。

图片

图5 方法选择对经颅诱发脑电图电位的影响

图片

图6方法选择对 N15-P30 和 N100-P180 复合体(早期和晚期反应幅度)的影响

3.4 方法选择对 TEP 的影响

通过对从所有纳入出版物中提取的 TEP 潜伏期和振幅进行 LOESS 回归拟合,重现了文献中报道的 M1 刺激后的 “典型” TEP 波形,该波形由不同的 N15、P30、N45、P60、N100 和 P180 偏转或峰值组成(图 5A)。提取的数据显示,研究之间各个 TEP 峰值在潜伏期和振幅方面存在显著差异(图 5A)。

我们通过绘制和比较这些典型峰值的提取潜伏期和振幅,评估了方法选择对报告的 TEP 的影响。我们发现 TMS 强度对报告的 TEP 有影响(图 5B 和 S3B):强度高于 RMT 的 TMS 显示出更大的反应幅度,这反映在通过对提取的潜伏期和振幅进行 LOESS 回归拟合得到的更大的 TEP 波形上。在比较特定 TEP 峰值振幅时,超阈值刺激后的 N45、P60 和 N100 显著大于阈下刺激。值得注意的是,在比较 N15-P30 峰间振幅或 N100-P180 峰间振幅时,未观察到 TMS 强度之间的显著差异(图 6A、B)。总之,结果表明较高的刺激强度通常会导致更大的 TEP 峰值振幅,特别是 N45、P60 和 N100 峰值。

我们还比较了使用主动或被动听觉掩蔽的研究与未应用听觉掩蔽的研究的 TEP 数据。在检查提取的峰值和拟合波形时,与被动噪声掩蔽(如耳塞)和无噪声掩蔽相比,使用主动噪声掩蔽(N = 45)似乎与总体较低的皮层反应相关。然而,在进行多重比较校正后,使用不同噪声掩蔽策略的研究之间在特定 TEP 峰值振幅方面未观察到显著差异(图 5C 和 S3C)。当使用 N100-P180 复合体的峰间振幅作为皮层长潜伏期激活和感觉处理的标志物时,听觉掩蔽类型存在显著的主效应(图 6B)。事后检验显示,使用被动噪声掩蔽的研究相对于主动噪声掩蔽的研究,N100-P180复合体的峰间振幅显著更高。在使用被动噪声掩蔽和无噪声掩蔽的研究之间,或在使用主动噪声掩蔽和无噪声掩蔽的研究之间,未发现显著差异。噪声掩蔽对 TMS 后早期皮层反应幅度的测量也有显著影响(图 6A)。与无噪声掩蔽和被动噪声掩蔽相比,使用主动噪声掩蔽与较小的 N15-P30 峰间振幅相关。总之,主动噪声掩蔽与皮层反应性的早期和晚期测量值的总体降低相关。

在 TMS-EEG 数据预处理期间使用 1 或 2 轮 ICA似乎导致诱发活动的幅度较小,与不使用 ICA(N = 31)相比。这可以从拟合到提取的 TEP 峰值的波形中看出(图 5D)。然而,仅在 N100 峰值上发现了显著差异,使用 2 轮 ICA 后,N100 峰值比不使用ICA 时更小。在比较 N15-P30 峰间振幅(图6A)和 N100-P180 峰间振幅(图 6B)时,也观察到了显著效应。在明确使用 ICA 去除被认为反映感觉活动的独立成分的研究与未使用 ICA 的研究之间,未观察到显著差异。此外,在仅考虑报告来自靠近刺激部位电极的 TEP 的研究中,ICA 对N15-P30 峰间振幅和 N100-P180 峰间振幅的影响仍然存在。总之,这表明使用 ICA 的研究报告的 TMS 诱发活动的早期和晚期测量值的幅度较低。

对于上述所有变量,在比较自发基线活动(即刺激前)的条件时,未发现显著差异,这表明使用不同的方法不会导致自发(刺激前)EEG 活动的总体变化。此外,当比较通过相对样本大小加权的 TEP 特征时,研究之间获得了可比的结果,除了 ICA 对 N15-P30 复合体的影响没有统计学意义。

4. 讨论

我们对 137 项针对 M1 的已发表TMS-EEG 实验的系统回顾揭示了三个主要发现。第一,研究之间的方法学细节报告存在差异。第二,尽管方法学存在多样性,且研究之间的振幅和潜伏期存在变化,但健康个体的已发表数据集中于 M1 的 “典型” TEP 波形,包括不同的 N15、P30、N45、P60、N100 和 P180 峰值。我们发现包括 TMS 强度、噪声掩蔽类型和预处理中使用 ICA 在内的方法选择会导致报告的 TEP 振幅出现系统性差异。

4.1 已发表 TMS-EEG 研究中的方法报告

严格报告方法学变量是解释和复制研究的前提。在本次综述中,我们发现方法的报告总体上是良好的,并且随着时间的推移有所改进。我们还发现,许多方法学变量在已发表的研究中得到了一致的报告,而有些变量则没有。这些遗漏的影响无法从本综述中推断出来,但有些可能比其他变量更关键。例如,关于 ICA 后去除的独立成分数量以及促使其去除的标准的缺失信息,可能会使数据的解释变得复杂,因为正如在此处和一项专门研究此问题的研究中所示,成分的去除会对报告的 TEP 波形产生重大影响。仍然需要使与数据采集、预处理和分析相关的决策完全透明。这对于确保 TMS-EEG 实验和分析的可重复性至关重要。

4.2 TEP 的方法学多样性和稳健性

当对从所有纳入的出版物中提取的 TEP 峰值潜伏期和振幅进行 LOESS 回归曲线拟合时,我们能够重现刺激 M1 后被认为是 “典型” 的 TEP 波形:特征性的时间锁定反应由在经颅刺激后约 15、45 和 100 毫秒出现的负峰或偏转以及约 30、60 和 180 毫秒出现的正峰或偏转组成。根据迄今为止已发表研究中应用的各种方法集,我们推断 M1 的 TMS 可诱发的 EEG 模式在健康成人大脑中是相对稳健的。同时,在比较实际的潜伏期和振幅时,研究之间也存在一定程度的可变性。通过按使用的方法对纳入的研究进行分组,进一步揭示了方法选择如何系统地影响 TEP 峰值振幅。接下来,我们将讨论研究人员在计划、执行和分析 TMS-EEG 实验时必须做出的三个关键决策如何影响报告的 TEP 峰值振幅。

4.3 常见方法选择对 TEP 的影响

使用阈上刺激强度的研究通常报告比使用等于或低于静息运动阈值的刺激强度的研究更大的诱发皮层反应。事实上,刺激强度之间的显著差异在特定的 TEP 峰值上可见:N45、P60 和 N100 的振幅在阈上刺激后显著大于阈下刺激(N45、P60、N100)和阈值刺激(P60)。阈上 TMS 脉冲后更大的 TEP 反应可以归因于对目标 M1 皮层回路的更强的经颅激发。然而,其他非经颅的 “脱靶” 机制也可能起作用。例如,使用阈上刺激的 TMS-EEG 研究也会引起目标肌肉的抽搐,例如,在针对运动手代表的 TMS-EEG 研究中,对侧手部内在肌肉会发生抽搐。肌肉抽搐会产生再传入活动,该活动在刺激后约 40 - 60 毫秒到达与抽搐相对的躯体感觉皮层(即刺激部位的同侧)。这种再传入皮层兴奋可能导致阈上刺激时 TEP 的 N45 和 P60 峰值更大,而阈下刺激时则较小。一项在静息运动阈值下刺激并比较经颅刺激引起运动反应的试验和相同 TMS 脉冲未产生运动反应的试验的 TEP 的研究支持了这一假设。在这个时间窗口内,引起运动诱发电位的试验比未引起运动诱发电位的试验观察到更大的振幅。

TEP 是一种复合信号,反映了神经系统 “直接” 经颅激发和 “间接” 外周激发对 TMS 的局部和远程皮层反应的混合。外周共刺激是不可避免的,会导致皮层区域的复杂 “脱靶” 激活,这与经颅皮层刺激引起的皮层反应模式相互作用。一个突出的外周反应是由听觉系统通过空气和骨传导的共刺激引起的。潜伏期超过 60 毫秒的 TEP 峰值通常归因于与听觉和躯体感觉共刺激的后期处理相关的过程。由于较高的刺激强度伴随着更响亮的咔哒声和大脑外部神经元素的更大电激发,更强的外周脱靶刺激可能导致阈上强度下更大的 N100 峰值。然而,在 N100-P180 复合体上未观察到明显的效应。

基于上述原因,噪声掩蔽用于最小化 TEP 反应被放电线圈产生的声音的皮层处理所污染的可能性。听觉刺激会引起清晰的时间锁定的 EEG 反应,称为听觉诱发电位(AEPs)。AEPs 是多方面的反应,但在 TMS-EEG 领域,重点主要放在晚期 AEP 成分上,包括约 50 毫秒的正峰(P50)和随后的 N100-P180 复合体。从图 5A所示的 M1 的典型 TEP 中可以看出,TMS 后也会观察到类似的峰值。在探索噪声掩蔽对先前发表研究中的 TEP 的影响时,我们发现,与使用被动(如耳塞)噪声掩蔽的研究相比,使用主动噪声掩蔽(如通过耳塞播放的白噪声)的研究在早期(N15-P30)和晚期(N100-P180)时间窗口中皮层反应较低。我们还发现,使用主动噪声掩蔽的研究与未使用掩蔽的研究相比,早期反应幅度较低。这些发现与最近的研究表明白噪声可能改变皮层兴奋性和连接性的研究结果相关。总体而言,这可能表明使用主动噪声掩蔽可以改变正在进行的大脑状态,从而影响皮层反应性的测量。

噪声掩蔽的效果似乎对 TEP 产生广泛影响,而不是选择性地影响特定的 TEP 峰值。没有发现单个 TEP 峰值受到噪声掩蔽类型的独特影响。然而,在比较使用主动噪声掩蔽的研究和使用被动噪声掩蔽的研究时,观察到 N100-P180 复合体的振幅较低,这是皮层后期感觉处理的标志。值得注意的是,在比较使用主动噪声掩蔽的研究和无噪声掩蔽的研究的 TEP 反应时,未观察到一致的差异。这一阴性发现不应导致主动噪声掩蔽在减少听觉共刺激方面无效的结论。事实上,在几项研究中已经令人信服地证明了在严格应用时,主动噪声掩蔽的有效性。我们更倾向于将没有一致差异归因于掩蔽程序的使用不足。事实上,本工作中纳入的 6/6 项评估 TMS “咔哒” 声感知响度的研究报告说,尽管使用了主动噪声掩蔽,但仍有一定程度的刺激可听性。这可能暗示了一个更普遍的趋势,即以前尝试掩蔽放电 TMS 线圈的声音 - 无论是被动还是主动 - 可能经常无效,并且刺激的残留听觉输入可能导致许多已发表的 TMS-EEG 研究中报告的 TEP 结果。

在这种情况下,我们还想强调,N100-P180 复合体不仅与听觉处理有关,还反映了对突出的、与模态无关的感觉刺激的神经反应。例如,在一名聋人身上,当刺激靠近头皮时,观察到了清晰的 N100-P180 反应。在这种情况下,N100-P180 很可能是由刺激引起的皮肤受体和外周轴突的兴奋产生的,这些兴奋有助于躯体感觉。重要的是,当线圈远离头部时,没有观察到 N100-P180 反应,有效地消除了 TMS 脉冲对躯体感觉的刺激。由于只有 7% 的综述研究评估了参与者如何感知 TMS(无论是 TMS 本身还是与假刺激相比),因此系统评估听觉和躯体感觉共刺激的主观感知对 TMS 诱发的皮层活动的影响受到了阻碍。处理感觉共刺激的另一种方法是采用假手术程序,以区分对 TMS 的直接反应和由感觉共激活引起的反应。尽管假手术程序似乎越来越多地纳入实验设计中,但有效匹配真实和假 TMS 之间的感知感觉仍然具有挑战性。无论是否纳入假手术控制条件,我们建议未来的TEP 研究应常规评估和报告 TMS 脉冲引起的多模态感觉感知。

ICA 是一种将多元数据分离为统计独立成分的方法,最初被引入TMS-EEG 领域,作为分离神经生理数据和伪影的工具,例如 TMS 脉冲衰减和头皮肌肉伪影。后来,它也被建议作为去除由听觉共刺激(即 AEPs)引起的活动的工具。我们发现,使用 ICA 的研究报告的 TEP 峰值振幅在数值上小于不使用 ICA 的研究。

ICA 的这种总体抑制效应在许多 TEP 峰值上都存在,并且在早期(N15-P30 复合体)和晚期(N100 峰值和 N100-P180 复合体)时间窗口中都存在,这表明 ICA 的使用可能会在清理后的信号中引入对报告的 TEP 动态的总体偏差。后一种效应在明确报告使用 ICA 去除被认为反映感觉活动的成分的研究和未使用 ICA 的研究中都观察到。总之,这表明 ICA 的使用可以选择性地 - 可能也是无意地 - 改变 TEP 中生理皮层信号的表达。我们的发现呼应了最近对 ICA 后神经和伪影数据意外共同去除的担忧。事实上,在早期和晚期 TEP 反应中观察到的较低振幅,如 N100、N15-P30 和N100-P180,可能表明在一些使用 ICA 进行预处理的研究中对不同的生理信号产生了无意的影响。或者,ICA 对早期和晚期反应幅度的影响也可能反映了对具有多方面时间过程的单个神经源的去除,尽管多项研究表明早期和晚期 TEP反应反映了不同的生理现象。许多使用 ICA 的研究没有详细说明 ICA 是如何使用的(即成分的数量及其选择)。这不仅阻碍了可重复性,还使解释报告的TEP 变得复杂,因为很难确切推断出哪些数据来源被去除了。值得注意的是,ICA 的使用似乎也与分析和报告 TEP 数据的电极选择有关。报告使用 ICA 的研究最常报告来自靠近刺激部位的电极的 TEP 数据,而不使用 ICA 的研究最常报告来自靠近顶点的中央头皮位置的电极的 TEP 数据,如 Cz 电极。这种方法选择可能影响了某些 TEP 特征的表达,尽管当仅限于分析报告来自靠近刺激部位电极的 TEP 数据的研究时,ICA 对早期和晚期 TEP 特征的影响似乎占主导地位。总之,我们看到需要对 TMS-EEG 研究中用于去除伪影的 ICA 的使用进行详细评估。由于 ICA 越来越受欢迎,这一点变得尤为重要,因为过去五年中发表的超过 90% 的 TMS 研究使用了 ICA。

4.4 结论性评论

在本工作中,我们对 TMS-EEG 研究中针对 M1 所使用的不同方法进行了全面回顾。我们还展示了研究之间的报告标准如何变化,以及关于 TMS 程序以及 EEG 数据记录和预处理的一些相关细节在未来的研究中应更一致地报告。我们通过比较使用不同方法的先前发表研究中提取的 TEP 峰值振幅,概述了某些方法选择如何影响 TEP。我们发现,关于刺激强度、听觉掩蔽和 ICA 使用的方法选择与已发表的 TEP 数据的系统性变化相关。这些发现意味着方法选择很重要,在比较研究结果和计划未来研究时应仔细考虑。虽然我们发现刺激强度、噪声掩蔽和 ICA 的使用之间没有明确的依赖关系,但我们不能完全排除这些方法因素与本报告中未系统比较的其他方法选择之间的系统相互作用。此外,值得注意的是,某些方法选择比其他选择更普遍,导致我们的每个比较中可获得的观察数量不同,这可能影响了统计功效。此外,先前发表研究中报告的 TEP 峰值振幅的显著可变性也可能影响了比较不同方法使用时的统计功效。例如,人们可能期望噪声掩蔽对 N100-180 复合体有明显的影响。在本综述中,我们关注了三个具体的方法变量,即刺激强度、噪声掩蔽的应用和 ICA 的使用。这些变量被选择是因为它们反映了研究人员在计划、执行和分析TMS-EEG 实验时的关键考虑因素。可以假设,其他方法变量也可能对 TEP 结果产生系统性影响。方法选择的影响及其可能的相互作用需要在未来的研究中进行系统检查。

参考文献:Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值