nature reviews neuroscience|数据驱动的神经退行性疾病进展模型:跳出黑匣子思考

数据驱动的疾病进展模型是一组新兴的计算工具,可重建长期慢性疾病的疾病时间线,为了解疾病过程及其潜在机制提供独特的见解。这种方法将人类的先验知识和假设与大规模数据处理和参数估计相结合,从短期数据推断出长期的疾病轨迹。与“黑匣子”机器学习工具相比,数据驱动的疾病进展模型通常需要更少的数据,并且本身具有可解释性,因此除了实现分类、预测和分层之外,还有助于理解疾病。在这篇综述中,我们将当前数据驱动的疾病进展模型置于一个总体框架中,并讨论了与构建静态疾病轮廓的更广泛的机器学习工具相比,它们在构建疾病时间轴方面的增强效用。我们回顾了它们在多种神经退行性疾病(尤其是阿尔茨海默病)中的应用,如确定疾病生物标志物的时间轨迹、检验关于疾病机制的假设和发现疾病亚型。我们概述了技术发展的关键领域,并将其转化为更广泛的神经科学和非神经科学应用。最后,我们讨论了将疾病进展模型纳入临床实践和试验设置的潜在途径和障碍。

1. 简介

阿尔茨海默病、帕金森病、额颞叶痴呆和亨廷顿病等神经退行性疾病在多年的时间尺度内发生特征性演变,有较长的临床前期和前驱期。神经退行性疾病通常与疾病生物标志物随时间(即疾病时间轴)的刻板变化相关。生物标志物提供了定义疾病的基础疾病过程的解读,通常对于特定疾病或亚型是唯一的。疾病时间轴为不同患者和疾病阶段的神经退行性疾病分类提供了机制,为了解此类疾病的生物学提供了窗口,并为临床试验和研究中的队列选择提供了框架

如果有可能从已知处于类似疾病轨迹的一组个体获得密集采样的从头至尾纵向测量值,那么绘制神经退行性疾病的时间轴将相对简单。然而,由于许多原因,收集这样的数据集是不切实际的。首先,即使不考虑临床前阶段,要求进行长达数十年的广泛评估也是不切实际的。检查通常不方便(例如,个人可能需要前往记忆诊所或成像中心),通常是侵入性的(例如,可能需要腰椎穿刺),而且费用昂贵。此外,即使可以跟踪少数人,早期的技术也会过时,整个评估期间的数据一致性较低。其次,许多神经退行性疾病是散发的,因此病例难以在症状出现之前识别,而症状可能是在病理过程开始多年后出现。因此,测量结果往往低估了重要的症状前阶段。最后,典型患者人群的异质性和疾病机制的复杂性加剧了这些问题。研究需要大型队列来捕获患者轨迹的变异性,以及不同的生物标志物集,从而了解所涉及的各种疾病过程。因此,真实世界患者数据集主要包括横断面和短期纵向生物标志物测量值,在疾病开始时较为稀疏,并且具有异质性

数据驱动的疾病进展模型是一组新兴的计算工具,可根据短期生物标志物数据推断长期疾病时间线。分类或聚类工具构建的是一个(子)组的静态平均特征,而数据驱动的疾病进展模型推断的是描述疾病随时间推移的序贯进展或演变的时间线。由数据驱动的疾病进展模型推断出的时间线有一系列应用,并且越来越多地用于研究,以提供关于神经退行性疾病的生物学见解,并作为分层工具。虽然最初是为神经退行性疾病应用开发的,但数据驱动的疾病进展模型在一系列长期慢性疾病中具有更广泛的适用性。与神经退行性疾病相似,许多其他神经系统和非神经系统疾病(包括多发性硬化和慢性阻塞性肺疾病等肺部疾病)也会在很长时间内演变,通常包括临床前阶段,并且与疾病生物标志物变化的典型时间轴相关。近年来,数据驱动的疾病进展模型已开始在更广泛的神经科学和非神经科学应用中被采用。

在这篇综述中,我们总结了数据驱动的疾病进展模型的现状。我们首先定义了"数据驱动的疾病进展模型",并提供了数据驱动的疾病进展模型的框架,将疾病进展模型大致分为现象学模型和病理生理学模型。我们描述了激发和启发了数据驱动的疾病进展模型开发的更广泛方法。我们回顾了现象学和病理生理学模型的现状,并总结了迄今为止在多种神经退行性疾病中提供的生物学见解。最后,我们讨论了技术开发的进一步机会,以及如何实现数据驱动的疾病进展模型作为疾病理解和管理工具的全部潜力。

2. 数据驱动的疾病进展模型

2.1 定义

数据驱动的疾病进展模型是一系列统计和机器学习工具,开发这些工具的目的是在不需要预先了解个体疾病分期的情况下,从短期数据中学习慢性病的长期疾病生物标志物时间表。这样的模型能够以细粒度的时间分辨率映射生物标志物的变化。

“数据驱动的疾病进展模型”一词在文献中不一致地用于指一系列模型。为了本综述的目的,我们将数据驱动的疾病进展模型定义为具有两个关键特征:

  • 他们构建了一个数据驱动的疾病时间表。数据驱动的疾病时间轴是根据数据驱动的疾病时间轴(基于模型的推断时间轴,测量个人在预期平均疾病时间轴上的位置)建立的疾病随时间推移如何演变的生成模型。该特性支持以细粒度的时间分辨率推断时间线。

  • 他们直接受到测量数据的影响。体内生物标志物的使用确保了定量疾病时间线,提供了生物学洞察力,使患者分期和分层成为可能,并/或提供了长期疾病进展的预测。

目前数据驱动的疾病进展模型可分为两大类:现象学模型和病理生理学模型。现象学模型旨在捕捉疾病生物标志物的共同轨迹,而不考虑潜在的机制。相比之下,病理生理学模型旨在从生物和物理过程和特征方面解释疾病时间线,例如是什么决定了疾病的易感性和病理学的传播。

2.2 框架

我们提出了数据驱动的疾病进展模型的一般框架。数据驱动的疾病进展模型使用生成性疾病进展模型和一组由人类洞察力提供的约束条件来推断数据驱动的疾病时间轴,以及沿着时间轴的生物标志物轨迹形状(数据驱动的疾病进展模型框架见图1)。数据驱动时间轴是基于模型的时间轴,描述了预期的平均疾病时间轴,并相对于该时间轴对个体进行时间调整。这使得短期数据能够为长期疾病轨迹提供信息,而由人类见解提供的一组轨迹约束能够从有噪声的医疗数据集重建轨迹,并确保产出的可解释性。经典回归技术(见下文)在本质上受到用于在时间轴上定位个体的疾病分期指标的时间分辨率的限制,与此相反,数据驱动的疾病进展模型可以以更细粒度的时间分辨率重建疾病时间线。

上述和图1所示的数据驱动的疾病进展模型框架适用于现象学和病理生理学疾病进展模型。

现象学模型通常只使用与轨迹预期形状相关的较弱约束。这需要复杂的拟合策略,即在时间上重新排列短期快照,从而推断长期生物标志物轨迹的参数(图1)。相比之下,许多病理生理学模型受到的限制非常大,因此它们可以使用简单的拟合方法,将一组参数的预期轨迹与平均终末期疾病模式进行比较。这些模型可以在框架中描述为将轨迹对准单个后期时间点。近期的病理生理学模型(见下文)使用了现象学模型的策略,即沿着整个疾病时间过程重新调整短期快照,从而能够拟合更复杂(约束较少)的模型。我们的框架将广泛的现象学和病理生理学模型置于一个共同的范式中。

图片

图1 数据驱动的疾病进展模型框架

3. 更广阔的景观和历史背景

从真实世界数据集(主要是横断面和短期纵向数据集)推断神经退行性疾病时间线是一个技术挑战。我们在本文中描述了神经退行性疾病时间轴模型的更广泛情况,以及启发我们开发数据驱动的疾病进展模型(根据短期数据重建长期进展)的历史背景。

3.1 神经病理学分期系统

神经病理学分期系统旨在根据横断面数据重建长期疾病进展模式,但不能直接应用于体内生物标志物数据。Braak和Braak分期系统假设阿尔茨海默病以一种刻板的方式在脑内从一个区域扩散到另一个区域,并利用这一假设,根据个体中不同区域受影响的感知频率,从横断面数据推导出神经病理学分期系统。具体而言,如果我们观察到病理B通常没有病理A,但只有很少情况下观察到病理A没有病理B,我们可以推断出疾病通常在病理A之前产生病理B。这一观点支持基于事件的模型(见下文)的数学构建,使我们能够从完全横断面数据重建纵向进展。更一般地说,观察到神经退行性疾病从一个地区到另一个地区的序贯进展,以及根据横断面(或短期纵向)数据重建纵向进展的想法启发了广泛的疾病进展模型,并支持这些人群单调进展模型中的大多数假设。

3.2 假设生物标志物模型

假设模型描述了阿尔茨海默病生物标志物进展的预期时间线,但不是定量的。例如,Jack等根据对现有数据的综述,描述了阿尔茨海默病体内生物标志物进化的假设时间模式,并提出了一个模型,在该模型中,淀粉样蛋白-β生物标志物首先变得异常,然后是神经退行性生物标志物和认知症状,神经退行性生物标志物与临床症状严重程度相关。在围绕阿尔茨海默病生物标志物的预期变化模式和病因病理机制的辩论中,假设模型具有很大的影响力。对这些模型的定量版本(基于观察数据)的需求未得到满足,这推动了数据驱动的疾病进展模型的开发,并启发了这些模型的一些设计选择。假设模型仍然是整合和辩论总体研究结果的重要方法,并不断根据文献提出和更新。

3.3 回归

从短期数据推断长期进展的一种简单的统计学方法是使用回归来找到个体的平均轨迹;也就是说,绘制一个人的生物标志物测量值与他们在疾病过程中的位置的图表。经典的回归技术依赖于直接测量的经验性疾病时间轴,这需要沿着疾病时间轴了解个体的阶段。对于长期慢性疾病而言,这一阶段尚不明确,特别是在症状出现前阶段,这限制了推断的疾病时间线的时间分辨率。我们强调指出,尽管经典回归技术是数据驱动的,但它们不符合我们对数据驱动的疾病进展模型的定义,因为它们依赖于经验的疾病时间轴。这将它们的时间分辨率限制在用于索引疾病时间轴的疾病分期测量的分辨率上。用于阿尔茨海默病和其他神经退行性疾病的疾病分期指标示例包括以下:

  • 实足年龄。我们绘制了相对于实际年龄的生物标志物轨迹。然而,神经退行性疾病的发病年龄各不相同。

  • 临床分期。临床(症状)分期指标已被用于估计疾病进展,但通常是粗糙的(例如“轻度”、“中度”和“重度”),而且它们对认知测试评分的依赖妨碍了对疾病症状前阶段进展的监测。

  • 生物标志物索引。许多研究绘制了与作为疾病分期替代指标的单一生物标志物相关的生物标志物模式,例如绘制皮质和海马萎缩与认知测试评分的对比图。然而,大多数生物标志物仅对特定的疾病阶段敏感,并且可能对所关注的疾病无特异性。

  • 显性遗传疾病的预期发病年龄。目前已经对显性遗传遗传病绘制了更细粒度的时间分辨率,其中父母的发病年龄和/或遗传标记可提供大致的疾病阶段基准。然而,这样的分期系统并不完善,不能推广到散发性疾病。

  • 转换时间。最近,几项观察性队列研究达到了足够长的持续时间,足以在中等规模人群中观察到诊断之间的转换,从而能够根据至诊断的时间对个体进行分期。然而,这些研究受到诊断时间准确性的限制,并且对症状前疾病阶段的样本量不足。

不完善的疾病分期系统进一步限制了表征神经退行性疾病异质性的能力。聚类常用于这一目的,但需要准确测量疾病分期,以避免将疾病亚型和分期合并。

4. 唯象模型

现象学模型(图2)共同学习疾病生物标志物轨迹和数据驱动的疾病时间轴。这些疾病标签可直接应用于疾病分期和患者分层(见下文),方法是将个体的生物标志物值与一个或多个模型进行比较,以找到最佳的分期和/或分层。现象学模型也支持一些基本的机制见解。例如,如果一个模型表明生物标志物A在生物标志物B之前变得异常,则可以推断潜在的生物过程遵循类似的时间关系。

我们将现象学模型大致分为四类:离散模型、连续模型、时空模型和亚型模型(表1和图2)。现象学模型一般以表格数据为输入,即来自临床研究的每个患者的生物标志物数据集的电子表格,可能是横断面的,也可能是短期纵向的。更复杂的模型,如时空模型,有时直接使用原始数据(例如,图像数据集),而不是衍生的生物标志物。现象学模型的输出通常包括一组沿着数据驱动的疾病时间轴的生物标志物轨迹。人类的知识限制了这些轨迹的形状,例如,通过指定参数函数形式或单调性约束。与病理生理学模型使用的强得多的(先验)约束相比,这种约束相对较弱。

4.1 离散模型

离散模型将疾病进展描述为通过一系列状态的转变。每个状态由一组预期的生物标记值或值的范围/分布组成。简单的模型,如基于事件的模型,对状态进行了严格的排序,将疾病时间轴定义为每个受试者经历每个阶段的疾病阶段序列。更复杂的模型,比如扩展到基于事件的模型和隐马尔可夫模型,可以使用状态的部分排序,这样不同的个体遵循不同的路径,而不必在每个状态之间转换。

4.2 连续模型

连续模型将生物标志物轨迹描述为数据驱动的疾病时间轴的连续函数。可以从横断面数据估计连续模型,以获得具有任意时间尺度的时间线(伪时间方法)。然而,在实践中,大多数连续模型使用短期纵向数据以绝对时间尺度重建时间线(微分方程模型和潜伏时间回归方法)。目前的文献包括三种关键的连续模型方法:通常独立估计生物标志物轨迹的微分方程模型,以及联合估计一组生物标志物轨迹和共同时间轴的伪时间方法和潜伏时间回归模型。

4.3 时空模型

时空模型(图2c)通常基于与潜伏时间回归方法相似的思想,但在高维空间中运行,从而能够建模完整的图像、特定脑区(如海马)的形状变化或图像特征图(如皮质表面的皮质厚度图)。这些模型来自医学图像配准社区,在医学图像配准社区中,将图像扭曲到公共空间是群体分析的早期步骤。多模态模型通常处理形状变化、特征映射和标量值的组合。体素模型处理完整的图像,但通常限于单一的模态。

4.4 疾病亚型模型

疾病亚型模型(图2d)结合了来自聚类和疾病进展模型的想法,从而估算了多个亚组的不同数据驱动的疾病时间线,从而放松了早期关于单一常见疾病时间线的现象学模型的假设

图片

图2 选定的现象学数据驱动的疾病进展模型

5. 病理生理模型

病理生理学模型(图3和图4)根据基础病理生理过程和患者特征描述了预期的疾病时间线。这些模型估计了假设的病理生理过程的特征,这些病理生理过程生成的疾病时间线最能预测观察到的生物标志物测量值,通常更多地关注生物学假设检验和洞察力,而不是疾病现象学。病理生理学模型可以为支持或反对有关疾病机制的相互竞争的假说提供证据。

本节首先讨论病原体出现和传播的概念,这是所有类型的病理生理学模型的核心。然后,我们回顾了病理生理学建模的最新进展,将病理生理学模型大致分为网络模型、动力系统模型和机制组合模型(可以包括网络模型和动力系统模型)。

表1总结了每一类病理生理模型的属性,并与现象学模型进行了对比。病理生理学模型通常采用大脑拓扑属性的模型或近似值作为输入,例如连接map基因表达map (通常基于健康对照个体的平均模板),根据人类知识或假设,假设这些属性驱动或介导病理生理学。利用相对强的先验约束,模型沿着数据驱动的疾病时间轴输出一组预期的生物标志物轨迹,以及经模型调整的任何病理生理学参数的估定值。网络模型有很高的限制,预期的病理模式完全由连接度量来定义。动力学系统模型中的约束略弱但仍然较高,通常仅估计病理生理过程的少数关键参数。机制组合模型旨在同时描述多种机制的相对效应,以及可能的相互作用。它们的约束水平因机制数量和每种机制的病理生理参数而异;然而,我们将一个典型的模型描述为适度约束。

图片

图3 支持病理生理学模型的假说的网络说明

图片

图4 根据神经退行性疾病研究的观察数据训练的病理生理学模型的例子

6. 应用

数据驱动的疾病进展模型在基础疾病理解和临床应用方面具有独特的潜在影响(图5)。下面我们讨论了与这些模型相关的过去工作和未来期望。

图片

图5 数据驱动的疾病进展模型的实例应用

6.1 生物学洞察力和新的治疗策略

数据驱动的疾病进展模型的早期动机包括了解神经退行性疾病(尤其是阿尔茨海默病)的变化顺序。这种生物学认识可以指导治疗策略并产生临床影响。迄今为止的工作使我们了解了序列在不同情况下如何变化,多模态生物标志物的轨迹在共同的时间轴上如何相关,以及数据驱动的定性假设模型验证。

6.2 病理累积时间尺度

在散发性和家族性阿尔茨海默病中,通过认知功能下降的轨迹和病理累积,微分方程模型(图5a)有助于理解时间尺度。尤其是微分方程模型(图5a)首次定量估计了淀粉样蛋白-β在阿尔茨海默病中累积的时间尺度,估计从早期异常到有症状个体的典型水平转变长达19年

6.3 对假设模型的定量支持

基于事件的散发性和家族性阿尔茨海默病模型以及患者分期工具为阿尔茨海默级联的假设模型提供了定量支持(图5c)。他们证实,淀粉样蛋白-β和tau蛋白的累积(通过在脑脊液(CSF)或正电子发射断层扫描(PET)成像中测量它们的水平进行定量)发生于脑萎缩(通过MRI确定)和认知功能下降之前。基于事件的模型进一步证明了新的生物标志物优于现有的。同样,自我建模回归方法等已经为阿尔茨海默病、帕金森病和亨廷顿病产生了数据驱动的生物标志物轨迹(和分期工具),这些轨迹大体上反映了假设模型和观察模型的变化顺序,但不同方法和数据集的变化轨迹不同。

6.4 细粒度的模式内模型

可以从模内模型获得细粒度的见解;例如,局部影像学生物标志物或认知测试评分集。我们在家族性疾病方面获得了令人信服的早期图像结果,并将其应用于各种散发性疾病和家族性疾病。例如,阿尔茨海默病、亨廷顿病、帕金森痴呆、进行性多发性硬化、额颞叶痴呆、肌萎缩侧索硬化、进行性核上性麻痹和克-雅氏病。基于事件的认知测试模型对特定认知能力下降的顺序有独特见解,这对于理解非典型、罕见的痴呆(如后皮质萎缩)特别有用。

6.5 子类型描述

亚型模型为整个疾病时间线的异质性提供了新的理解。迄今为止,它们的应用主要局限于模式,包括突出阿尔茨海默病的脑萎缩累积模式、额颞叶痴呆、多发性硬化、皮质基底节综合征和进行性核上性麻痹、阿尔茨海默病的tau蛋白和淀粉样蛋白-β累积模式,以及阿尔茨海默病的蛋白质组学亚型。基于图像的数据驱动的疾病亚型可预测额颞叶痴呆、阿尔茨海默病的认知功能下降和多发性硬化的治疗应答情况,甚至可能在检测和监测症状前疾病方面有价值(图5b)。亚型模型已被应用于神经病理学评级数据,从而为肌萎缩侧索硬化、额颞叶痴呆和边缘主导的年龄相关性TDP脑病的TDP病理开发了一种新的数据驱动的分期系统。

6.6 疾病危险因素的影响

现象学模型也为各种危险因素如何影响疾病的发病和表现提供了潜在的新理解。例如,Vogel等表明,阿尔茨海默病tau蛋白时空亚型之间的疾病进展速率不同,Young等表明,特定的阿尔茨海默病亚型与心血管和糖尿病危险因素相关。Young等还表明,遗传性额颞叶痴呆的基于图像的亚型与不同突变组(GRN、C9ORF72和MAPT突变组)大致一致,这为该算法提供了重要验证。此外,C9ORF72突变组可根据不同的脑萎缩模式分为2个亚组,MAPT突变组可分为亚组;MAPT突变组的两种不同萎缩模式也可能与MAPT的特定突变有关。一旦建立了模型,这些模型通常会事后观察风险因素的关联。相比之下,Koval等的时空模型联合学习了阿尔茨海默病的危险因素和以各种危险因素水平为条件的进展,从而全面了解危险因素如何影响阿尔茨海默病的进展,包括女性早期和加速的认知衰退

6.7 机械见解

病理生理学模型旨在了解疾病的机制。以宏观图像集合为基础的计算模型可能揭示微观或分子过程在起作用,这一观点令人信服。然而,迄今进行的实验过于简单,其结果必须谨慎解释。朊病毒样传播假说作为病理生理学模型解释患者数据集的重要组成部分在许多出版物中得到广泛关注。这支持了Vogel等的论证,即震中的差异是阿尔茨海默病中tau蛋白病理表现的关键差异。体外实验表明,病理性蛋白通过白质局部连接,进一步支持朊病毒假说,但这一过程是否扩大到更大范围,并显著影响全脑病理模式仍是一个有待解决的问题。许多动力学系统模型假设朊病毒样传播,并令人信服地再现了病理学模式,但其他模型,如参考文献。使用一些不同的传播模型,但也恢复了令人信服的模式。未来需要建立统计学上严格的模型比较和证据评估框架,以及体外和体内验证框架,从而将这些技术从科学好奇转变为用于了解疾病的严肃工具。

6.8 假设的治疗策略

病理生理学模型还可以为治疗策略提供信息,例如提示何时干预以及以哪些生物标志物为靶点。Iturria-Medina等人的多因子微分方程模型通过模拟表明,多领域干预对阿尔茨海默病最有效。该研究团队开发了一个病理生理学模型,用于根据提示阿尔茨海默病治疗的个体化遗传靶点的组学数据估计伪时间累积分子改变簇。Sanz Perl等开发了一种全脑扰动模型,可用于阿尔茨海默病和行为变异型额颞叶痴呆的脑刺激方案的计算机模拟测试。虽然这令人兴奋,但我们仍需要大量验证和模型改进工作,以促进我们提出的假设治疗策略的转化。

6.9 临床应用和实验

最终,数据驱动的疾病进展模型提供了定量的时间和/或亚型信息,可以改善个体水平的决策。在临床应用和试验中,这些额外信息可用于基于模型的分层(或在未分层的情况下进行协变),以确定应答者亚组或丰富队列。

7. 未来的技术方向

目前数据驱动的疾病进展模型有一系列局限性,这凸显了未来技术开发的关键领域。

7.1 特征学习

目前的大多数模型依赖于一组预先设定的输入特征,这限制了推断疾病时间线的丰富程度,并且可能遗漏了远端脑区等之间的关系。特征学习(即同时估计特征及其时间线)可以用更显著、可能弥散或多模态的特征集来定义轨迹,取代预先定义的疾病特征(例如局部脑体积和预先选择的遗传变异体)。Marinescu等提供了如何实现这一目标的早期演示,而Sauty和Durrleman、Yang等、Martí-Juan等和Zhou等使用的深度学习方法具有相当大的前景。

7.2 综合治疗效果

随着神经退行性疾病的治疗方法出现,建模和预测治疗效果的能力变得至关重要。未来的工作可以通过仔细考虑使用纵向数据或干预性研究来开发和了解因果效应,将单调轨迹假设放宽至模拟治疗应答。

7.3 Omics-based模型

组学信息的整合可以提高现象学和病理生理学模型提供的生物学洞察力。迄今为止,疾病进展模型和遗传学之间的关联主要是事后确定的。未来的模型可以将遗传变异直接考虑为固定效应,从而推断遗传危险因素如何影响疾病进展模式或进展速度。更复杂的模型也有可能;例如,使用单细胞组学数据来比较来自一系列不同细胞类型的数据关于疾病机制的假设。

7.4 跨尺度的综合模型

跨尺度整合多组学数据的模型具有重要前景。如Iturria-Medina等所示,与单细胞转录组学社区开发的假时间方法集成可为开发这些技术提供平台。通过将脑行为模型与疾病进展模型相结合,也有可能建立描述在功能和解剖变化与认知子领域缺陷之间建立时间线的模型。

7.5 年龄效应

年龄是痴呆的最大危险因素,衰老过程可能与神经退行性疾病相互作用。将疾病进展模型与先进的衰老模型(如“脑年龄”模型)相结合可以提供两个关键益处:从机制上了解衰老过程和神经退行性疾病之间的相互作用;以及通过规范模型更好地辨别健康和疾病。

7.6 多重病症

多病共存(多种慢性疾病并存)在老年人中很常见。在疾病进展模型中,合并症可建模为固定效应(或交互作用项)。

7.7 混合病理学

混合病理(与多种神经退行性疾病相符的病理)在老年人中非常普遍。目前的疾病进展模型未能分离出每种病理的影响和相互作用。未来的模型可以将每一种病理视为单独的组成部分,从而能够揭示个体病理对非特异性下游生物标志物(如脑容量损失和认知)的影响。

7.8 更广泛的机制

病理生理学模型可用于考虑更广泛的疾病机制,如代谢改变(例如葡萄糖摄取不足、全身性线粒体功能障碍、氧化损伤和脂质代谢变化)、脑血管功能障碍以及神经炎症和胶质细胞激活。

7.9 更广泛的神经学和非神经学应用

疾病进展模型越来越多地应用于原发性神经退行性疾病以外的更广泛的神经和非神经疾病;例如,多发性硬化、精神分裂症、抑郁症、骨关节炎、癫痫和肺部疾病。针对这些应用领域定制疾病进展模型是未来模型开发的关键领域。

7.10 谱系和亚型

当前的亚型模型假定了不同的群体,并且将“发现”亚型,即使在本质上的变化更加光谱化。最近在多种学习方面的工作旨在通过使用连续表示来区分这些情况,并且这种学习可以与疾病进展模型结合使用,以更好地理解亚型是不同的实体还是代表变化图景中的点。

7.11 模型评估

对模型的全面评估是实现疾病进展模型转化潜力的关键,并为未来提出了重要挑战。绝大多数阿尔茨海默病进展模型是使用公开的ADNI数据集建立的,但随着外部数据集可用性的增加和开源软件的提供,外部验证正在增加 (示例数据集列表和选定的数据驱动的疾病进展建模软件库见补充信息)。虽然在缺乏基本事实的情况下进行评估具有挑战性,但实现这一目标的策略包括生成综合的基本事实(例如模拟疾病时间线),将模型输出与已知的生物学特征(例如遗传学)进行比较,评估预测性能和纵向一致性(在随访数据中),以及对不断增加的可用数据量进行外部验证。未来的一个关键方向是对各模型进行基准比较,以便更好地了解疾病进展模型的哪些组成部分在不同应用中最有益。我们将通过进一步的社区挑战,如阿尔茨海默病纵向进化预测挑战(The Alzheimer 's Disease Prediction Of Longitudinal Evolution, TADPOLE challenge)、CADDementia和其他,进一步推进这一点。实效性研究应包括模型拟合(和下游洞察)所需的最低数据要求,以指导观察性和干预性研究中资源节约且患者友好的研究方案的设计。此外,模型在鉴别诊断应用中的性能仍有待探索,部分原因是疾病研究之间的方案差异。

8. 总结和展望

数据驱动的疾病进展模型是一组统计学和计算工具,用于根据横断面和短期纵向数据估计数据驱动的疾病时间线。纯横断面模型使用任意时间尺度估计疾病时间线,而短期纵向模型使用绝对时间尺度估计疾病时间线。数据驱动的疾病进展模型的最新进展侧重于通过建模疾病亚型、个体化轨迹或机制组合来提高疾病时间线的个体化。目前,有一系列模型旨在推断类似类型的信息,但它们的数学结构略有不同;为了确定模型性能的差异,有必要对模型进行直接比较,这一观点得到了社区挑战的支持。

数据驱动的疾病进展模型大致分为现象学模型和病理生理学模型。现象学模型可直接应用于疾病分期、分层、预后、鉴别诊断等分类和预测任务,而病理生理学模型评估不同候选疾病机制的证据或推断控制疾病机制的关键参数。现象学模型在技术上比病理生理学模型更成熟;文献中的许多贡献包括开源软件工具,并且在多个数据集中得到了复制。相比之下,病理生理模型处于技术发展的早期阶段,因此,应更加谨慎地对待其输出结果。现象学模型和病理生理学模型开始指导彼此的设计,一些较新的模型结合了两者的元素。结合现象学和病理生理学模型可能最终证明是一个比单独的现象学模型或病理生理学模型更强大的框架。联合模型可以通过有效整合不同尺度的数据,实现进一步的个性化,从而获得更大的预测能力,并提供量身定制的生物学见解。

快速发展的数据驱动疾病进展模型领域为以下两个关键途径的应用提供了潜在的变革性机会:对疾病的生物学了解,为预防或干预策略提供信息;以及在临床试验和医疗保健中的应用。其在临床试验和医疗保健中的应用范围是多样的,包括临床试验设计、在医疗保健机构用于患者诊断和预后,以及在人群健康规划和决策中使用。我们将通过对神经退行性疾病基础生物学的理解和模型精度的耦合进展,继续了解神经退行性疾病的多样性、相互作用、途径和原因。疾病修饰疗法的出现为改进模型和评估操纵病理过程的影响提供了另外一种方法。

数据驱动的疾病进展模型提供了一个利用人类知识指导基于机器的发现的平台。这将要求我们从目前的临床实践过渡,在目前的临床实践中,疾病进展模型的影响是次要的,即通过对模型的认识来指导和告知人类设计的系统。例如,目前提出的阿尔茨海默病A/T/N分期系统研究采用了基于事件的模型和亚型(多个系列的阶段,每个阶段由症状或异常标志物的出现定义)的解剖结构,但其构建基于启发式人类洞察力,而不是直接由数据驱动。同样,临床试验尚未直接使用疾病进展模型,数据驱动的见解只能间接指导试验设计。未来,疾病进展模型可直接用于分层、未分层的协变或结局预测,从而指导最佳临床试验设计。

在这些广泛的应用领域实现数据驱动的疾病进展模型的潜力需要多方面的努力:模型本身的进一步技术开发;持续的数据收集和验证活动;与广泛的利益攸关方(临床医师、药物开发人员、医疗决策者、患者等)接触,以确保了解并促进吸收。将不同学科的专家联系在一起对于实现广泛的潜在应用至关重要。用于模型训练和验证的高质量数据是关键,可能最终需要方法开发人员与临床医师或制药公司之间的协调工作,以收集量身定制的数据集。从长远来看,我们设想数据驱动的疾病进展模型作为新的计算医学范式的一部分,将我们在这里讨论的各种技术带入神经退行性疾病患者的诊断、分期和预后的中心阶段,并为治疗决策提供信息。

参考文献:Data-driven modelling of neurodegenerative disease progression: thinking outside the black box.

  • 28
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值