Nature Communications|在交谈过程中朋友之间倾向于开拓新话题而陌生人之间倾向于寻找共同话题:超扫描研究

摘要:在交谈过程中,人们常常努力以一种易于理解的方式传达信息(寻找共同话题),同时也会分享新颖或令人惊讶的信息(开拓新话题)。在此,我们测试朋友和陌生人是如何平衡这两种策略来与彼此建立联系的。通过功能性磁共振成像(fMRI)超扫描技术,我们通过追踪二人组在半结构化的增进亲密感的交谈过程中的神经和语言轨迹,将对共同话题的偏好测量为随着时间推移而趋于一致,将开拓新话题测量为随着时间推移而产生分歧。在我们的研究中,60组(其中30组是朋友二人组)参与了一场有明确提示且轮流发言的实时交谈。我们的分析显示,朋友在神经和语言方面会产生分歧:随着时间推移,他们的神经模式变得更加不同,并且会探讨更多样化的话题。相比之下,陌生人则会趋于一致:神经模式和语言随着时间推移变得更加相似。陌生人之间的交谈越是类似于朋友间那种具有探索性的交谈,他们就越享受这次交谈。我们的研究结果凸显了开拓新话题是实现成功交谈的一种策略。

1. 引言

对话是建立社交联系的最快捷、最有效的方式之一。在对话过程中,人们必须以对话伙伴可以理解的方式传达他们的想法和感受,从而找到共同点。同时,人们应该探索新领域,提供新奇的想法和令人惊讶的信息。本研究探讨了朋友和陌生人如何使用这两种策略与他人建立联系。

人们喜欢与他人交谈,但是人们并不清楚什么是好的。有没有一条可靠的途径来进行良好的对话?这条路是否取决于感情历史?

人们通过对话来寻找共同点。为了建立共同点,对话伙伴会重复彼此的单词,使用相同的单词引用对象,并采用类似的语法。随着每一次新的话语,传播者都会聚集在他们独特的共同历史所独有的共同语言和共同知识上。获奖者将趋同于共同点的合作伙伴评为更有能力、更热情、更合作。这表明趋同可能有助于人们相互理解。除了检查语言的一致性,可以通过身体运动的对齐来评估共同点。例如,当人们独立地对电影、语音或其他复杂刺激做出相同的解释时,他们会表现出同步的大脑活动。相反,当人们对体验意见不一致时,就会出现神经对齐,神经对齐是相似心理状态的标志。

在这里,我们通过测量二人组在对话过程中经历心理趋同或对齐程度的增加来测试实时对话中的共同点。这种心理趋同与积极的社会结果有关,例如情感支持、人际交往、社会影响力、社会凝聚力、亲密、顺从性、相似性感知和合作。这表明共同点可以促进陌生人之间的社会联系,并随着友谊而变得更加牢固。

另一方面,过多的趋同可能会使对话过于可预测和无聊。相反,对话伙伴可能希望与对方互动并引起兴趣,因此寻求探索新领域。新奇会增加参与度和兴趣。当人们感到惊讶或遇到新的和意想不到的事情时,他们更有可能集中注意力,不太可能感到无聊。人类为了信息本身而重视信息,并愿意投入金钱来获取信息,即使它与手头的任务无关。在社交方面,当人们参与自己的思想或阅读他人的思想时,当内容跨越不同的概念领域时,人们会获得更多的乐趣。因此,实质性对话可能既具有深度又具有新颖性。相比之下,肤浅的对话可能会受到社会规范和礼貌的限制。事实上,以更多探索和新奇以及较少闲聊为特征的对话与更高的幸福感相关、加强社会联系和缓解负面情绪体验。因此,对话伙伴可能会有动力探索新领域并在他们的互动中寻求惊喜和新奇。在这里,我们通过测量二人组在对话过程中经历心理分化或增加心理状态距离的程度来测试对新领域的探索。

人们可能会根据他们与对话伙伴的社交关系来寻求不同的对话策略。当人们彼此非常了解时,他们的交谈方式与刚开始了解对方时的方式不同。与朋友的对话受益于现有的共同知识,涉及更多的自我披露,并且比与陌生人的对话更独特、更广泛、更轻松。长时间的对话对陌生人来说很尴尬,但会增加朋友的联系。因此,朋友比陌生人有更好的对话,并且可能会采取不同的策略来实现这些对话。

社交关系如何影响对话的轨迹?朋友有共同的历史和共同的参考点,这使他们能够利用更多样化的话题在对话中进行讨论。朋友建立的语义关联在外人看来可能很遥远,从而使朋友能够更快地改变谈话中的话题50.朋友在谈话中产生的话题也比陌生人多。也就是说,朋友的交流不一定比陌生人更准确或更有效,尽管他们有共同的历史和更多的共同点。因此,虽然有证据表明朋友在对话中的表现与陌生人不同,但没有研究直接测试他们在实施这两种策略方面的差异以及这如何预测对话结果。我们假设,如果朋友建立在他们已经建立的共同点上,那么倾向于寻找新领域和发散应该是一种更有益的策略。没有共同经历和共同参考点的陌生人应该更愿意在共同点上趋同。这两种对话策略并不相互排斥;对话伙伴可能在探索新话题之前先找到共同点,或者探索直到找到丰富的话题来利用;人们也可能在一个维度上寻求共同点,同时在另一个维度上探索。但是,根据对话者之间的现有关系,更倾向于一种策略可能会以不同的方式使不同的对话受益。

本研究调查了在半结构化建立亲密关系的对话中寻找共同点与探索新点如何支持社会联系。我们测试了二人组的初始关系(朋友与陌生人)如何影响他们对每种策略的使用。我们使用神经和语言测量来测量寻找共同点和探索新点,分别在精神状态空间和主题空间中作为收敛和发散。这种方法提供了独特的机会,可以在三种不同的对话轨迹测量中实时评估对话策略和心理体验。我们使用 fMRI 超扫描来跟踪 60 个正在进行实时对话的二人组。一半的二人组自认为是朋友,另一半是陌生人。这使我们能够测试现有的社交联系如何影响寻找共同点的使用与探索新的共同点策略,以及这与对话结果的关系。

超扫描和对话文献指出了心理化在建立社会联系方面的关键重要性。在这里,我们通过跟踪人们心理状态的收敛和发散来衡量寻找共同点与探索新点。先前的研究表明,三个维度(社会影响、理性和效价,称为 3D 思维模型)捕捉了人们心理状态基础的全脑激活的大部分方差。理性代表人们是倾向于冷静和深思熟虑地行事,还是本能或轻率地做出反应。社会影响捕捉了精神状态是在激烈的社交互动还是低能量的孤独经历中出现的。最后,效价反映了一个人感觉是好是坏。知道一个人在这个 3D 空间中的位置可以很好地说明他们的内部心理状态。知道两个人在这个空间内是否相互靠近或远离,可以告诉你他们的心理状态是收敛还是发散。通过使用神经解码模型从全脑神经活动模式中跟踪参与者的精神状态,我们测试了 3D 精神状态空间的收敛和发散在朋友和陌生人的对话过程中如何变化。

为了测量语言数据的收敛/发散,我们采用自然语言处理 (NLP) 从对话中使用的单词中解码同一 3D 心理状态空间中的位置。为了了解心理状态动态与对话内容的关系,我们使用主题建模提取了参与者在主题空间中的轨迹。然后,我们测试了朋友与陌生人在精神状态收敛(神经和语言)和整个对话中的话题探索方面的差异。

在这里,我们表明,朋友开始时比陌生人更一致,但随后在神经、语言和话题空间上出现分歧——这表明朋友倾向于在对话中探索新的领域。陌生人开始更疏远,随着时间的推移变得更加一致——这表明陌生人倾向于在对话中找到共同点。陌生人之间的对话探索新领域越多,他们的对话就越好。

2. 结果

2.1 朋友的对话质量比陌生人高

我们首先测试了朋友之间的交谈是否比陌生人之间的更好。参与者在交谈结束后完成了一项调查,调查内容包括对交谈的享受程度、与对方的亲密感和相似感、说话和倾听时的焦虑程度、再次互动的愿望以及成为朋友的愿望。对这些测量指标进行的因素分析确定了交谈质量的四个衡量标准。

在所有四个潜在因素方面,朋友之间的交谈质量明显优于陌生人(图1)。负面情绪的信度较低(克朗巴赫系数ɑ = 0.63;评分者间相关系数r = 0.29,p = 0.03),所以未作进一步分析。

图片

图1 陌生人相比,朋友的对话质量更高

图片

图2 陌生二元组(左)和朋友二元组(右)沿价维度的示例轨迹

2.2 朋友在精神状态空间中发散,而陌生人则相聚

朋友比陌生人更喜欢他们的交谈内容以及交谈对象。那么是哪种交谈策略——寻找共同话题还是开拓新话题——促成了这些积极的结果呢?

为了回答这个问题,我们通过功能性磁共振成像(fMRI)来测量二人组在心理状态空间中的移动情况。我们使用了一种神经解码模型,在交谈过程中对每位参与者在心理状态空间中的位置进行定位和追踪。这种解码方法最初是在四个独立的数据集中开发并验证的,在这些数据集中,我们了解每个时间点上两位参与者的神经模式以及所考虑的心理状态。该模型通过套索主成分回归(LASSO-PCR)学会了将全脑神经模式转化为定义心理状态空间的三个维度上的坐标。合理性维度通过右侧额下回和内侧前额叶皮质(MPFC)能得到最佳解码;社会影响维度通过默认模式网络(后扣带皮层、角回、MPFC)进行解码;效价维度则通过腹内侧前额叶皮质(vMPFC)和MPFC58进行解码。我们将这三个模型应用于交谈数据,以便在这三个维度上确定每位参与者的位置。利用解码后的坐标,我们计算出在每个时刻两位交谈者在心理状态空间中的距离(图2),距离越小,表示二人组之间的心理状态契合度越高。

图片

图3 随着时间的推移,朋友比陌生人的分歧更大

我们使用多级模型来测试每次对话中二元组是收敛还是发散。对神经模式的分析表明,朋友在精神状态空间中发散,而陌生人则趋同(图2A)。朋友开始时比陌生人有更高的心理状态对齐,然后在心理状态空间中发散,直到他们的距离大于陌生人。

在一个并行的探索性分析中,我们测量了二人组在语言空间中的移动情况。我们利用自然语言处理技术,根据每位参与者每次发言的词汇来确定他们在心理状态空间中的位置。这一分析同样显示出了相同方向的趋势(图3B)。我们还发现了一个显著的三向交互作用,即时间和关系类型之间的交互作用取决于试验次数。最初,朋友和陌生人都会趋于一致,但在一半的试验之后,我们开始看到与神经数据相同的效应:朋友出现分歧,而陌生人趋于一致。

最后,在一个并行的探索性分析中,我们测量了二人组在话题空间中的移动情况。我们应用无监督机器学习来提取每次发言的话题,并计算它们之间的语义差异。话题建模分析显示,朋友比陌生人更快地探索更多样化的话题(图3C)。朋友产生的话题也明显更多(图4A),更频繁地转换话题(图4B),并且话题之间的跳跃跨度更大(图4C)。总之,这些发现表明,陌生人在心理状态空间中趋于一致,并且会较长时间地围绕话题展开讨论,而朋友在神经和语言心理状态空间中出现分歧,并且会探索更多的话题空间(图5)。

图片

图4 朋友在对话中比陌生人探索的话题更多

图片

图5 朋友与陌生人讨论的对话话题

2.3 分歧与陌生人之间更好的对话有关

朋友之间的交谈质量比陌生人之间的要高。他们还采用不同的交谈策略,朋友会选择开拓新话题,而陌生人则侧重于寻找共同话题。那么在陌生人当中,开拓新话题在多大程度上可能与有益的结果相关联呢?我们通过一项探索性分析对此可能性进行了测试,该分析旨在探究在心理状态空间和话题空间中的分歧是否与陌生人之间更好的交谈相关。

对于亲密感的评分,我们拟合了三个多层回归模型,分别用于预测以下三个距离度量指标:神经心理状态空间中的马氏距离、语言心理状态空间中的马氏距离以及话题空间中的余弦距离。每个模型都将亲密感、试验次数以及时间点(组内)作为预测变量。分析结果显示,时间点和亲密感之间存在显著的交互作用,也就是说,当陌生人在语言心理状态空间中分歧更大时(图6D),他们会感觉与交谈对象更加亲密。

对于享受程度,我们再次拟合了三个多层模型,这次将享受程度作为预测变量。这些模型显示,当陌生人在神经心理状态空间中分歧更大时(图6B),他们会更加享受交谈过程。

最后,我们拟合了三个以相似感作为预测变量的模型。在此我们发现,当陌生人在语言心理状态(图6F)、神经心理状态(图6C)中分歧更大,并且当他们探索更多的话题空间时(图6I),他们会感觉与交谈对象更加相似。综合来看,这些结果表明,当陌生人在交谈中开拓更多话题时,他们的交谈质量会更好。

图片

图6 探索新领域的陌生人比找到共同点的陌生人有更好的对话

3. 讨论

作为人类最大的乐趣之一就是与他人建立联系。人们如何利用对话来建立这些联系?在这里,我们调查了两个人如何在对话中调整他们的心理状态并浏览话题。我们发现了两种不同策略的有力证据:探索新领域和寻找共同点。人们根据他们的社会关系使用不同的策略。朋友开始时比陌生人在精神上更一致,但随后在精神状态和话题空间上出现分歧。相比之下,陌生人开始更遥远,然后随着时间的推移而趋同。陌生人之间的对话越像朋友之间的对话那样分散,他们就越喜欢它,并且感觉与他们的对话伙伴很亲近和相似。因此,越成功的对话探索了更多的新领域。

我们的研究结果检验了关于什么是良好对话的两种互补理论。一方面,以前的文献提出对话的目标是建立共同点。通过生理、语言、姿势和神经同步建立共同点并与积极的社会结果相关,例如人际交往、亲密关系、合作和社会影响力。另一种文学流派强调了对话中新奇和探索的重要性。探索新领域的对话与更高的幸福感和更牢固的社会联系有关。我们的研究结果表明,默认策略取决于是否存在社会联系或目标是建立新的社会联系,从而证明了这两种说法的优点。陌生人互动时的默认趋势是建立共同点。这是通过建立心理和语言的趋同来实现的——即使这种策略不会带来更好的对话。相比之下,当朋友交谈时,他们往往会探索新的领域。

我们在三个不同的测量中发现了这种影响的趋同证据。为了了解这种差异背后的神经认知动力学,我们开发了可以从对话伙伴的神经模式中解码心理状态的模型。这使我们能够跟踪参与者的精神状态以及他们在精神状态空间中的相对距离。这种预先注册的分析表明,朋友渐行渐远,而陌生人则聚集在神经精神状态空间中。我们在使用自然语言处理的平行探索性分析中在语言心理状态空间中复制了这些发现。我们根据参与者在对话中的话语得出心理状态位置。朋友在谈话中总是分道扬镳,而陌生人在后来的试验中在语言心理状态空间上趋同。我们在使用主题建模的探索性分析中再次复制了这些发现,以研究二元组如何在主题空间中漫游。与陌生人相比,朋友生成的话题更多,在话题之间切换更频繁,切换到更遥远的话题。因此,在三个不同的衡量标准(神经、语言和话题)中,我们发现朋友从更高水平的共同点开始,然后探索,而陌生人从较少的共同点开始,然后趋同,或者至少在对话过程中发散得更慢。这种趋同的证据突出了这种效应的稳健性。

陌生人主要在他们的谈话中寻求共同点。如果它有如此明显的好处,为什么陌生人不会默认去探索呢?对话可以被认为是空间觅食,其中二元组在充满此类集群的环境中(例如,分散的斑块)中搜索在集群中发现的主题(如灌木丛中的浆果)。人们应该坚持探索特定的补丁,直到在那里找到所需的项目变得具有挑战性。此时,他们应该放弃当前补丁以找到一个新的、未触及的补丁。探索存在风险 - 无法保证找到新的丰富补丁。在谈话中,陌生人可能会比朋友更长时间地利用话题,因为他们不太确定找到另一个富有成效的话题。通过建立共同点,陌生人可能会更多地了解潜在主题的前景,从而降低探索的风险。这表明,在本研究中的附属对话的背景下,这两种策略并不是相互排斥的,而是可以按顺序实施的。事实上,初步研究表明,长时间对话中的陌生人在一段时间的融合后开始探索。我们的研究结果表明,冒险更多地觅食的陌生人可能会发现更有价值的话题,并进行更愉快的对话。但是,快速找到共同点并放心探索的陌生人也有可能这样做,因为他们已经很匹配了。也就是说,他们最初的联系促进了探索和愉快的对话。

探索性分析表明,神经测量是谈话乐趣的最佳预测指标。这表明 fMRI 超扫描测量在预测对话成功方面的优势。仅靠文字可能无法捕捉到对话成功的所有心理驱动力。语言测量只能捕捉说话者的语言生产,而神经测量的优势在于持续跟踪对话伙伴的心理状态,包括在对话间隙和听众消费语言时的心理状态。fMRI 与其他神经影像学模式(如 EEG 和 fNIRS)相比还具有优势,例如高空间分辨率和检测中线和皮质下区域的活动。心理化、奖励处理和解码所有三个心理状态维度都依赖于这些区域。尽管如此,未来的研究可能会受益于探索我们的发现如何推广到其他神经影像学模式。

未来的研究还应调查其他类型社会互动中的心理状态收敛/发散。在这里,我们专门研究了从属关系对话期间心理状态对齐的动态,目的是建立和加强社会纽带。这就引出了一个问题,当对话的目标发生变化时,对话策略会如何变化?人们在试图说服、教导或向他人学习时,是否同样试图找到共同点或探索新领域?这种实验范式中的对话有些做作:人们被困在扫描仪中,别无选择,只能相互交谈。当陌生人相互交谈时,扫描仪之外的现实世界会发生什么?人们经常避免与陌生人交谈,因为他们低估了他人与他们交谈的兴趣。研究互动的选择如何影响此处描述的对话策略,将进一步阐明有效社交互动的机制。

这项研究有助于回答社交生活中一个永恒的问题:什么是好的对话?在所有分析中,我们始终发现朋友探索新领域,而陌生人则专注于寻找共同点。当陌生人像朋友一样探索时,他们的对话会更成功。尽管人们可能认为他们应该专注于与新认识的人寻找共同点,但过渡到探索新领域可以帮助人们更有效地建立关系。这些发现为关于最佳交谈方式的长期讨论提供了信息,并就如何满足人们与他人联系的普遍需求产生了见解。

4. 方法

本研究旨在调查良好对话的特征。以前的研究确定了两种可能的成功途径:共同心理状态的趋同与探索广泛的主题和观点。在这项研究中,我们专注于测试收敛(找到共同点)和发散(探索新领域)的最佳模式是否根据二元组的初始关系(朋友与陌生人)而有所不同。为此,我们使用了 fMRI 超扫描:60 个二人组通过离散提示和划定的转弯进行实时对话。招募的二人组中有一半自称是朋友,而另一半是陌生人。

先前的研究表明,人们使用三个维度,即社会影响、理性和效价,称为 3D 思维模型,来表示自己和他人的心理状态。在这里,我们使用这个模型来评估二元组在心理状态空间中的收敛或发散程度。为此,我们开发了预测模型,使用之前的四个(独立)fMRI 数据集,从全脑活动模式中解码精神状态表征,这些数据集使用精神状态判断任务来唤起在三个精神状态维度上变化的神经模式。

随后,我们将这三个模型应用于对话数据,以解码这三个维度在每个参与者的脑海中表达的程度。在我们的主要分析中,我们计算了在整个对话中每个时刻,两个说话者在 3D 心理状态空间中的马氏距离,其中较小的距离代表二元组之间心理状态的一致性较高。这些解码的心理状态空间中距离的神经指标是我们的主要因变量。我们使用 NLP 复制了这些分析,以从文本数据中解码心理状态维度。具体来说,我们使用了affectR,这是一种 NLP 算法,它根据参与者在对话中使用的词(补充方法)来解码心理状态位置。这里使用了语音轮流,因为它们是最小的有意义的分析单位,在这个单位下,可以使用语言数据计算说话人之间的心理状态空间距离。随后,我们测试了朋友在整个对话中的心理状态对齐(神经和语言)与陌生人的差异程度,对齐如何随时间变化,以及这两个因素(朋友与陌生人和时间)如何相互作用。此外,我们使用主题建模测试了朋友和陌生人在整个对话中对不同主题的探索有何不同。

4.1 参与者

共有 63 个二人组进行了实时对话,同时使用 fMRI 超扫描扫描他们。由于技术问题,4 个二元组的数据仍然不完整,被排除在进一步分析之外。因此,最终数据集由 30 个朋友配对组成,他们自我认同为朋友,并证明他们每周至少互动四天,持续至少三个月,以及 29 名陌生人,他们被随机配对并且在研究前不熟悉。所有参与者必须年满 18 岁才有资格参加这项研究。所有参与者都以普林斯顿大学机构审查委员会批准的方式提供知情同意。研究设计中没有考虑性别和性别,因为这不是我们预先注册的研究问题的一部分。在预注册时,我们没有强有力的假设,即对话策略及其神经相关性在不同性别或性别之间存在系统性差异。样本量是根据功效分析确定的,以检测神经数据中条件的主要影响并复制社交内容和连接试点数据之间的行为关系。

图片

图7 从每个参与者的角度看到的示例试验

4.2 任务和刺激

在扫描过程中,二人组躺在两个相邻房间的单独 fMRI 扫描仪中进行了对话。对话是自由形式的,这意味着参与者可以说任何他们想说的话,而且他们也会得到讨论的提示,以确保每个二人组都经历类似的主题。具体来说,在我们的对话任务中,二人组讨论了一个既定的社交任务(称为 Fast Friends 程序)中的几个主题提示旨在促进对话伙伴之间的社交联系。这是通过随着时间的推移逐渐提高提示的亲密程度来实现的。具体来说,总共有 20 个提示:8 个亲密度较低的提示、6个中等亲密度的提示和 6 个高度亲密度的提示。参与者轮流回答。在每个提示中,参与者被随机分配到谁将作为演讲者开始,谁将作为听众开始。一旦任何发言者说完话,他们就会按下一个按钮,表示轮到他们发言了,轮到对方发言了。参与者被指示填写每个提示的完整三分钟。同样重要的是要注意,参与者在进入扫描仪之前短暂地见过对方,之后在完成扫描后问卷时也短暂地见过面。

此外,还有两个二元组内条件:(i) 生成:在这些试验中,二元组提供了他们对提示的个人回答;这允许即时生成、表达、接收和回应彼此的话语。(ii) 阅读:在这些试验中,二人组阅读实验者提供的脚本——来自另一对先前研究的对话中的文本;这保留了对话的结构(说、听和轮流),但阻止了参与者生成相关的自我或社会信息或做出相应的回应。在正文中报告的所有分析中,我们只关注生成条件,因为参与者只能在这种条件下形成社会纽带。我们在补充方法中根据精神状态轨迹比较了这两种情况。在实验和结果评估期间,研究人员对二元间和二元内条件的分配并不盲目。

二人组完成了 20 项试验,随机分配到条件组;条件顺序在 Dyads 之间随机分配。每次运行包括 2 次生成和 2 次读取试验。试验从对话提示和条件提示 (9 s) 开始,然后是 180 s 的轮流。运行以固定十字 (12 s) 开始和结束。该方案包括 5 次运行,每次持续 13.6 分钟 (544 TRs)。

4.3 语音录制

我们使用定制的 MR 兼容记录系统的 Epa Shell。MR 记录系统使用两个正交方向的光学麦克风。参考麦克风记录背景噪声,而源麦克风同时记录背景噪声和说话人的语音(信号)。双重自适应滤波器从源通道中减去参考输入。为了保证最佳减法,对参考信号进行自适应滤波,其中滤波器增益从残差信号和参考输入中连续学习。为了防止在存在语音时过滤器出现发散,语音活动检测器被集成到算法中。最后,语音增强频谱滤波算法进一步对语音输出进行预处理,以实现实时语音增强。

4.4 fMRI 采集

使用 3 T Siemens Skyra MRI 系统和 3 T Siemens Prisma MRI 系统收集二重体的 fMRI 图像。两个扫描仪使用相同的扫描参数。以交错顺序(3.0 mm 切片厚度,3.0 × 3.0 mm 平面内分辨率,翻转角度 = 80°)以全脑覆盖获取功能扫描。

4.5 预处理

fMRI 数据使用基于 Nipype 的工具 fMRIPrep 版本 20.2.0 进行预处理。我们选择 fMRIPrep 是因为它解决了稳健且可重复的预处理挑战,因为它可以自动将基于一流算法的工作流程适应几乎任何数据集,无需人工干预即可实现高质量的预处理66.校正每个 T1w 体积的强度不均匀性和颅骨剥离。国际脑图联盟非线性不对称模板版本的空间归一化通过非线性配准进行,使用 T1w 体积和模板的大脑提取版本。在脑提取的 T1w 上进行脑脊液 (CSF)、白质 (WM) 和灰质的脑组织分割。通过将功能图像与强度反转的同一参与者 T1w 图像共配准来执行场图失真校正。然后,使用基于边界的配准共同配准到相应的T1w70具有 9 个自由度。运动校正变换、场畸变校正翘曲、血氧水平依赖性图像到 T1w 变换以及 T1w 到模板蒙特利尔影像研究所 (MNI) 翘曲使用 Lanczos 插值在一个步骤中连接和应用。使用 CompCor 提取生理噪声回归变量。估计了两种 CompCor 变体的主成分:颞部 (tCompCor) 和解剖学 (aCompCor)。然后计算了 6 个 tCompCor 分量,仅包括该皮层下掩码内前 5% 的可变体素。对于 aCompCor,在皮层下掩码的交集内计算了六个分量,并且在 CSF 和 WM 掩码投影到每个功能运行的原生空间后,在 T1w 空间中计算了它们的并集。框架位移72是使用 Nipype 的实现针对每个功能运行计算的。

4.6 探索朋友和陌生人之间对话质量的差异

对话结束后,参与者完成了一项调查,以衡量他们对社交联系的看法。这项调查包括有关谈话的享受、与伴侣的相似性、说话和倾听时的焦虑、与伴侣的亲密程度、再次互动的愿望以及成为朋友的愿望等问题。我们使用因子分析来识别潜在集群,这些集群更简洁地解释了对话在建立的社会联系方面如何不同(补充方法)。然后,我们使用双样本 t 检验来检验朋友和陌生人之间对所得潜在因素的评分差异。我们确保满足 t 检验的假设。在不满足等方差假设的情况下,我们改为进行 Welch 检验。

4.7 跟踪二元距离

在我们的主要分析中,我们想研究社会联系和时间如何相互作用以塑造心理状态空间的对齐(收敛与发散)。为此,我们需要跟踪每个参与者在对话中每个时刻的心理状态。我们想探索参与者在对话过程中如何在精神状态空间中收敛(或发散)。为了实现这一目标,我们开发了预测模型,使用之前四个独立的 fMRI 数据集来解码全脑活动模式的精神状态表征,这些数据集使用精神状态判断任务来唤起在三个精神状态维度上变化的神经模式。解码模型在四个独立于对话数据的 fMRI 数据集上进行了训练和测试。我们使用交叉验证和跨任务预测测试了模型的泛化性,在这两种情况下,都发现了显着的预测准确性(补充方法)。在训练和验证了三个维度中的每一个的模型之后,我们的主要分析将这三个模型应用于每个参与者的每次对话的对话任务中的每一卷预处理和去噪数据,以解码这三个维度的表达程度,从而在每个参与者的脑海中代表了哪些心理状态。我们还测试了我们解码的心理状态表征是否代表参与者自己的心理状态或对话伙伴的心理状态,发现它们代表了参与者自己的心理状态。在我们获得每个参与者和时间点的三个维度的值后,我们计算了每个时间点两个说话者之间的 Mahalanobis 距离,并计算了每个试验中跨时间点的平均距离。选择Mahalanobis 距离是因为它对输入的变量的尺度不敏感,它从相关变量中删除了冗余信息。因此,它已成为用于多变量 fMRI 分析的标准距离测量。到目前为止报告的所有 fMRI 分析都是使用自定义 Python ( 3.9 版) 脚本进行的。为了避免将我们的分析与对讨论提示开始和偏移的 BOLD 响应混淆,我们按照先前研究的建议删除了第一个和最后一个 7 个 TR (10.5 s) 来截断每个试验。

鉴于我们数据的嵌套结构(参与者体内试验中的时间点),我们然后进行了多层次分析,以测试友谊(朋友与陌生人)和时间(时间点和试验)对精神状态对齐的影响。由于每个讨论提示都构成了一个独立的对话,因此我们对每个提示中的时间点特别感兴趣。因此,与社会联系 (朋友与陌生人) 一起,试验中的时间点被认为是主要的自变量。因变量是具有高斯链接的连续马氏距离。友谊是二元水平的预测因子,而时间是试验水平(试验)和试验水平(时间点)的预测因子。我们将试验变量以 mean-centered 为中心,以促进三方交互作用效应的解释。这些模型允许在参与者内部进行随机截距。多级模型是在 R 中实现的77(版本 4.2.1)使用 NLME 软件包78.我们确保满足模型的假设。

参考文献:Hyperscanning shows friends explore and strangers converge in conversation.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值