Science:大规模神经元记录的分析方法

摘要:由于仪器、分子工具和数据处理软件的创新,同时记录数百或数千个神经元的活动已成为常规操作。这些记录可以通过数据科学方法进行分析,但尚不清楚应使用哪些方法或如何将其应用于神经科学研究。我们回顾、分类并展示了多种用于神经群体记录的分析方法,并描述了这些方法如何用于解决神经科学中的长期问题。我们回顾了从数学简单到复杂、从探索性到假设驱动、从新近开发到更成熟的方法。我们还展示了一些在分析大规模神经数据时常见的统计陷阱。

1. 引言

过去十年中,出现了许多用于研究大脑的新工具。其中包括通过电生理或光学成像方法记录大量神经元功能的工具。这些工具对于解决神经科学中的各种问题至关重要。例如,单个神经元在重复呈现相同刺激时会产生不同数量的动作电位,但尚不清楚这种变异性是否在整个大脑区域中以宏观水平协调。同样,感觉皮层中的神经元在没有感觉输入时也会产生动作电位,但尚不清楚它们的所谓“自发”活动在整个神经群体水平上是如何相关的,或者这种活动可能代表什么。最后一个例子是,内嗅皮层中的单个网格细胞代表环境的周期性空间特征,但尚不清楚这些单独的网格如何在整个群体中对齐和协调。

总的来说,大规模神经记录至少有三个原因是有用的:(i)它们大大加速了数据收集;(ii)它们使得研究协调的神经活动成为可能;(iii)它们使得研究跨多个空间尺度同时发生的计算成为可能。我们简要回顾了使大规模记录成为可能的技术进展,然后将本综述的大部分内容用于解释大规模神经数据的分析技术。

2. 技术进展的简要历史

在电生理学方面,Neuropixels的开发标志着单个电极杆上同时记录通道数量的重大飞跃。这一进展得益于微型化和电子集成的工程努力。随后的探针迭代进一步实现了微型化,用于自由移动的动物,并在多个电极杆上增加了更多通道,适用于较平坦的大脑区域,如皮层和海马体,以及更厚更长的探针,用于非人类灵长类动物和人类。其他具有多通道的探针也分别开发出来——特别是用于视网膜记录的数千个电极的平面阵列,以及多种类型的柔性电极,这些电极有望提高慢性记录的稳定性。为了利用这些新设备,需要对经典的数据处理方法进行彻底改革,因为现有方法需要大量的人工手动处理,这对于这种规模的数据来说效率低下。这导致了自动化的尖峰排序方法的开发,如Kilosort、MountainSort、JRClust等。

在光学成像方面,进展主要依赖于双光子钙成像。尽管双光子钙成像早在之前就已开发,但随着基因编码的钙指示剂GCaMP6的引入,它变得广泛使用。其他推动钙成像采用的因素包括易于使用的商用显微镜的可用性、高功率激光技术的创新,以及研究兴趣向较小动物模型的转变,这些模型更容易开发和测试分子工具,如GCaMP。在斑马鱼和小鼠中,已经展示了数万到数十万个神经元的超大规模记录,尽管这些记录在时间分辨率上做出了牺牲。还开发了专门的头戴式“微型显微镜”设备,用于自由移动的动物,使用单光子或最近的双光子激发。最近的钙传感器迭代更准确地代表了动作电位,并且这些传感器现在可以针对特定的神经元区域,如胞体和轴突。钙成像在非人类灵长类动物中也变得有效。与电生理学的发展类似,收集的大量数据需要开发自动化流程,如Suite2p、Caiman等,用于识别感兴趣的区域(如细胞),提取它们的时间变化活动轨迹,并通过反卷积方法将这些轨迹转换为尖峰时间的估计。

过去几年中,这些技术改进已传播到许多神经科学实验室。大量数据正在生成,如何处理这些数据的问题经常出现。我们回顾了最近的大规模神经记录分析方法及其产生的发现。本综述将作为一系列问题、方法和可能的答案进行,这些问题、方法和答案可能是在分析大规模神经记录时遇到的。也许您自己收集了这些数据,或者合作者为您收集了这些数据。或者,您可能在网上找到了共享的数据,因为越来越多的开放数据集在线可用。以下是您可能如何处理这些数据的一个可能的计划:(i)首先,您可以使用经典方法的扩展版本来寻找具有特定调谐特性的神经元,并研究这些特性在不同条件下的分布。(ii)然后,您可能会寻找所有同时记录的神经元活动的协调结构,这通常通过降维方法完成。(iii)最后,您可能会尝试将步骤(i)和(ii)中发现的神经群体与任务相关变量联系起来,这些变量可以明确地定义(如刺激或行为)或通过模型隐式定义(如奖励预期或注意调制)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值