题主本硕机械专业,自学转互联网 算法岗成功,获得阿里、字节、美团、华为等 15+ offer
后续会在公众号 「苏学算法」分享各类学习笔记、面试经验,感兴趣的可以关注一波~
一、核心公式
时域
=
=
>
==>
==> 频域
X
(
w
)
=
∫
−
∞
+
∞
x
(
t
)
e
−
j
w
t
d
t
X(w) = \int_{-\infty}^{+\infty} \,x(t){e^{-jwt}}{\rm d}t
X(w)=∫−∞+∞x(t)e−jwtdt
频域
=
=
>
==>
==> 时域
x
(
t
)
=
1
2
π
∫
−
∞
+
∞
X
(
w
)
e
j
w
t
d
w
x(t) =\frac{1}{2\pi} \int_{-\infty}^{+\infty} \,X(w){e^{jwt}}{\rm d}w
x(t)=2π1∫−∞+∞X(w)ejwtdw
二、详细推导
三、离散傅里叶变换
频率分辨率:
F
0
F_0
F0
(窗内)采样点数:
N
N
N
采样频率:
f
s
fs
fs
F 0 = f s N F_0 = \frac{fs}{N} F0=Nfs
一般实际操作时,窗长取 1024,2048,4096等等,由上述分析可知,当窗长取的太短的话,频域分辨率会很低( F 0 F_0 F0越大,就是间隔越大,频域分辨率越低),也就是里面很多的频域成分就看不到了,滤波啥的就无法操作了