傅里叶变换公式及其推导【超详细!】


题主本硕机械专业,自学转互联网 算法岗成功,获得阿里、字节、美团、华为等 15+ offer
后续会在公众号 「苏学算法」分享各类学习笔记、面试经验,感兴趣的可以关注一波~

在这里插入图片描述


一、核心公式

时域 = = > ==> ==> 频域
X ( w ) = ∫ − ∞ + ∞   x ( t ) e − j w t d t X(w) = \int_{-\infty}^{+\infty} \,x(t){e^{-jwt}}{\rm d}t X(w)=+x(t)ejwtdt

频域 = = > ==> ==> 时域
x ( t ) = 1 2 π ∫ − ∞ + ∞   X ( w ) e j w t d w x(t) =\frac{1}{2\pi} \int_{-\infty}^{+\infty} \,X(w){e^{jwt}}{\rm d}w x(t)=2π1+X(w)ejwtdw

二、详细推导

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、离散傅里叶变换

在这里插入图片描述
频率分辨率: F 0 F_0 F0
(窗内)采样点数: N N N
采样频率: f s fs fs

F 0 = f s N F_0 = \frac{fs}{N} F0=Nfs

一般实际操作时,窗长取 1024,2048,4096等等,由上述分析可知,当窗长取的太短的话,频域分辨率会很低( F 0 F_0 F0越大,就是间隔越大,频域分辨率越低),也就是里面很多的频域成分就看不到了,滤波啥的就无法操作了

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值