【广告推荐】用户行为序列建模(DIN、SIM)

文章探讨了如何通过用户行为序列建模,如lastN行为序列和DIN/SIM模型,来增强召回、粗排和精排过程中的用户特征表示。小红书实践中,结合不同行为向量和物品类别信息提高了效果。DIN模型通过注意力机制优化,而SIM则关注长期兴趣并控制计算成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、用户行为序列建模

  • 用户行为序列特征加到 召回、粗排、精排,都会有收益

1.1 普通多目标排序模型

下面是普通的多目标排序模型
在这里插入图片描述

1.2 用户的 lastN 行为序列

  • 这里重点关注 “用户特征” 中的 lastN 行为序列,也就是用户最近交互(曝光、点击、转化等等)过的 N 个物品序列(物品id序列、物品类目序列)
  • 做embedding:把N个物品id映射成N个向量,最后对向量取平均得到一个向量,这个向量可以作为用户的一种特征,表示用户过去对哪些物品感兴趣

在这里插入图片描述
在这里插入图片描述

1、小红书实践

  • 把点击、点赞、收藏等不同行为的 最终的多个向量 cancat 起来,作为用户特征
  • 在取lastN的时候,不仅会使用物品id,还会使用物品类目,把物品id emb和其他特征的emb拼起来,比只用id emb的效果更好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值