线性结构

单调栈

在这里插入图片描述
在这里插入图片描述

stack<int> s;//保存的是元素的下标
for(int i=1; i<=n; i++)
{
	while(!s.empty() && a[s.top()]>=a[i])
		s.pop();
	if(s.empty())
		L[i] = 0;
	else
		L[i] = s.top();//L 记录每个数左边第一个小于它的元素的位置,保存的是下标
	s.push(i);
}

========================================

单调队列

poj2823 滑动窗口 单调队列

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int maxn = 1000000+10;
int n,k;
int maxq[maxn], minq[maxn], num[maxn];//maxq minq 保存的都是下标

int maxans[maxn], minans[maxn];

int main()
{
	while(cin>>n>>k)
	{
		int maxhead=0, maxtail=0;
		int minhead=0, mintail=0;

		for(int i=0; i<n; i++)
		{ 
//			for(int w=0;w<n;w++)
//			cout<<maxq[i]<<" ";
//			cout<<endl; 
//			for(int w=0;w<n;w++)
//			cout<<minq[i]<<" ";
//			cout<<endl; 
			
			/*删除下标超出范围的队首元素*/
			//如果队首元素(最大值)的下标已经超出了 当前位置-窗口大小k,移动
			//。。。。。。最小值同最大值。。。。。。
			if(maxhead<maxtail && maxq[maxhead]<=i-k) maxhead++;
			if(minhead<mintail && minq[minhead]<=i-k) minhead++;

			 /*删除队尾元素*/
			scanf("%d",&num[i]);
			// cout<<maxtail<<endl;
			while(maxhead<maxtail && num[maxq[maxtail-1]]<=num[i])
				maxtail--;
			maxtail++;
			maxq[maxtail-1]=i;//maxtail 指向队尾的下一个元素 结合ppt的例子模拟即可明白 

			while(minhead<mintail && num[minq[mintail-1]]>=num[i])
				mintail--;
			mintail++;
			minq[mintail-1]=i;
//			cout<<maxhead<<" "<<maxq[maxhead]<<endl;
//			cout<<minhead<<" "<<minq[minhead]<<endl;

			maxans[i]=num[maxq[maxhead]];
			minans[i]=num[minq[minhead]];
		}

		for(int i=k-1; i<n; i++)
			cout<<minans[i]<<" ";
		cout<<endl;

		for(int i=k-1; i<n; i++)
			cout<<maxans[i]<<" ";
		cout<<endl;
	}
	return 0;
}
/*
设置两个单调队列分别记录最大值和最小值。
对于每一个新读入的数字,进行两次操作(对于求最大值和最小值中的某一个而言),
一是若队首不在滑窗范围内则删去;
二是删去队末比当前值小(或大)的值,并将当前值插入对尾。
每一次的最小(大)值就是当前单调队列的队首。
*/

============================================

尺取法

poj3061

============================================

练习题

hdu1506

  • 单调栈
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdlib>
using namespace std;
typedef long long ll;
const int maxn=1e3+10;
#define N 100005
 
int q[N]={-1},w[N];//w记录左宽;
int main()
{
    int n,h;
    while(scanf("%d",&n)&&n)
    {
        int top=0;
        ll ans=0;
        for(int i=1;i<=n+1;i++)
        {
            if(i!=n+1)
                scanf("%d",&h);
            else
                h=0;
            if(h>q[top])
                q[++top]=h,w[top]=1;
            else
            {
                ll cnt=0;  //第一个出栈的右宽为0;
                while(h<=q[top])
                {
                    ans=max(ans,(w[top]+cnt)*q[top]);  //(左宽+右宽)*高度;
                    cnt=cnt+w[top--];  //第 (i>1)出栈的右宽为上一个的总宽;
                }
//                终于找到比自己小的数字了,可以入栈了,入栈会得到左宽,左宽为上一个出栈元素的总宽+1;
                q[++top]=h;
                w[top]=cnt+1;
            }
        }
        printf("%I64d\n",ans);
    }
    return 0;
}
  • 递归
#include<iostream>
#include<algorithm>
#include<stack>
using namespace std;
int main() {
	while(true) {
		int n;
		cin>>n;
		if(n==0) break;
		long long int *a=new long long int[n+1];
		int *l=new int[n+1];
		int *r=new int[n+1];
		for(int i=0; i<n; i++) {
			l[i]=r[i]=i;
			cin>>a[i];
		}
		for(int i=1; i<n; i++)
			while(l[i]>=1&&a[l[i]-1]>=a[i])
				l[i]=l[l[i]-1];
		for(int i=n-2; i>=0; i--)
			while(r[i]<=n-2&&a[r[i]+1]>=a[i])
				r[i]=r[r[i]+1];
		long long int res=0;
		for(int i=0; i<n; i++) {
			if(res<a[i]*(r[i]-l[i]+1))
				res=a[i]*(r[i]-l[i]+1);
		}
		cout<<res<<endl;
	}

	return 0;
}

hdu1506


hdu1506

  • 单调栈
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值