【无标题】

假设泊松分布为 P ( k ; λ ) P(k;\lambda) P(k;λ),高斯分布为 N ( x ; μ , σ 2 ) N(x;\mu,\sigma^2) N(x;μ,σ2),则它们的乘积为:

P ( k ; λ ) N ( x ; μ , σ 2 ) = e − λ λ k k ! ⋅ 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2   = 1 k ! 2 π σ 2 e − λ e − ( x − μ ) 2 2 σ 2 λ k   = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 ⋅ e − λ λ k k ! \begin{aligned} P(k;\lambda) N(x;\mu,\sigma^2) &= \frac{e^{-\lambda} \lambda^k}{k!} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ &= \frac{1}{k! \sqrt{2\pi\sigma^2}} e^{-\lambda} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \lambda^k \ &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \cdot \frac{e^{-\lambda} \lambda^k}{k!} \end{aligned} P(k;λ)N(x;μ,σ2)=k!eλλk2πσ2 1e2σ2(xμ)2 =k!2πσ2 1eλe2σ2(xμ)2λk =2πσ2 1e2σ2(xμ)2k!eλλk

注意到 e − λ λ k k ! \frac{e^{-\lambda} \lambda^k}{k!} k!eλλk 是一个泊松分布 P ( k ; λ ) P(k;\lambda) P(k;λ) k k k 的概率质量函数,而 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} 2πσ2 1e2σ2(xμ)2 是一个高斯分布 N ( x ; μ , σ 2 ) N(x;\mu,\sigma^2) N(x;μ,σ2) x x x 的概率密度函数。因此, P ( k ; λ ) N ( x ; μ , σ 2 ) P(k;\lambda) N(x;\mu,\sigma^2) P(k;λ)N(x;μ,σ2) 可以被视为一个混合分布,其中 k k k 的概率质量由泊松分布给出, x x x 的概率密度由高斯分布给出。

这个混合分布在实际应用中非常常见,比如在计算机视觉中的目标跟踪、光流估计等问题中,通常会将目标的位置和速度建模为一个混合分布,其中位置由高斯分布给出,速度由泊松分布给出。这样可以同时考虑目标的位置和速度的不确定性,从而更准确地进行目标跟踪和运动估计等任务。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值