1、线性表的定义
零个或多个数据元素的有限序列。
特点:
1、是序列,元素之间是有顺序的。如果元素存在多个,则第一个元素无前驱,最后一个元素无后继,中间的元素有且只有一个前驱与后继。
2、线性表强调的是有限的。事实上,计算机处理的对象都是有限的,无限的数列往往存在于数学概念中。
3、线性表中的数据元素必须相同数据类型
2、线性表的抽象数据类型
ADT 线性表(List)
Data
线性表的数据对象集合为{a1,a2,……an},每个元素的类型均为DataType。其中,除第一个元素a1外,每一个元素有且只有一个直接前驱元素,除了最后一个元素an外,每一个元素有且只有一个直接后继元素。数据元素之间的关系是一对一的关系。
Operation
InitList(*L): 初始化操作,建立一个空的线性表L。
ListEmpty(L): 若线性表为空,返回true,否则返回false。
ClearList(*L): 将线性表清空。
GetElem(L,i,*e): 将线性表L中的第i个位置元素值返回给e。
LocateElem(L,e): 在线性表L中查找与给定值e相等的元素,如果查找成功,返回该元素在表中序号表示成功;否则,返回0表示失败。
ListInsert(*L,i,e): 在线性表L中的第i个位置插入新元素e。
ListDelete(*L,i,*e): 删除线性表L中第i个位置元素,并用e返回其值。
ListLength(L): 返回线性表L的元素个数。
endADT
3、线性表的顺序存储结构
线性表的顺序存储结构,指的是用一段地址连续的存储单元依次存储线性表的数据元素。
描述顺序存储结构需要三个属性:1)存储空间的起始位置;2)线性表的最大存储容量;3)线性表的当前长度。
顺序存储结构时,线性表的存取时间性能为O(1)。通常把具有这一特点的存储结构称为随机存取结构。
顺序存储结构线性表插入算法思路:
1)如果插入位置不合理,抛出异常;
2)如果线性表长度大于等于数组长度,则抛出异常或动态增加容量;
3)从最后一个元素开始向前遍历到第i个位置,分别将它们都向后移动一个位置;
4)将要插入元素填入位置i处;
5)表长加1。
顺序存储结构线性表的删除算法思路:
1)如果删除位置不合理,抛出异常;
2)取出删除元素;
3)从删除元素位置开始遍历到最后一个元素位置,分别将它们都向前移动一个位置;
4)表长减1。
顺序存储结构时,线性表插入删除的时间复杂度是O(n)。
线性表顺序存储结构的优缺点:
优点:1)无须为表中元素之间的逻辑关系而增加额外的存储空间;2)可以快速地存取表中任一位置的元素。
缺点:1)插入和删除操作需要移动大量元素;2)当线性表长度变化较大时,难以确定存储空间的容量;3)造成存储空间的“碎片”。
4、线性表的链式存储结构
为了表示每个数据元素ai与其直接后继数据元素ai+1之间的逻辑关系,对数据元素ai来说,除了存储其本身的信息之外,还需存储一个指示其直接后继的信息(即直接后继的存储位置)。我们把存储数据元素信息的域称为数据域,把存储直接后继位置的域称为指针域。指针域中存储的信息称做指针或链。这两部分信息组成数据元素ai的存储映像,称为节点。
链式存储结构线性表读取算法的思路:
1)声明一个指针p指向链表第一个结点,初始化j从1开始;
2)当j<i时,就遍历链表,让p的指针向后移动,不断指向下一结点,j累加1;
3)若到链表末尾p为空,则说明第i个节点不存在;
4)否则查找成功,返回结点p的数据。
链式存储结构线性表插入算法的思路:
1)声明一指针p指向链表头节点,初始化j从1开始;
2)当j<i时,就遍历链表,让p的指针向后移动,不断指向下一结点,j累加1;
3)若到链表末尾p为空,则说明第i个节点不存在;
4)否则查找成功,在系统中生成一个空结点s;
5)将数据元素e赋值给s->data;
6)单链表的插入标准语句s->next=p->next, p->next=s;
7)返回成功。
链式存储结构线性表删除算法的思路:
1)声明一指针p指向链表头指针,初始化j从1开始;
2)放j<1时,就遍历链表,让p的指针向后移动,不断指向下一个结点,j累加1;
3)若到链表末尾p为空,则说明第i个节点不存在;
4)否则查找成功,将欲删除的结点p->next赋值给q;
5)单链表的删除标准语句p->next=q->next;
6)将q结点中的数据赋值给e,作为返回;
7)释放q结点;
8)返回成功。
对于插入或删除数据越频繁的操作,单链表的效率优势就越是明显。
链式存储结构线性表删除算法的思路:
1)声明一结点p和q;
2)将第一个结点赋值给p;
3)循环:
将下一结点赋值给q;(遗嘱)
释放p;
将q赋值给p。
顺序存储和链式存储的选择?
1)若线性表需要频繁查找,很少进行插入和删除操作时,宜采用顺序存储结构。
2)当线性表中的元素个数变化较大或者根本不知道有多大时,最好用链式存储结构,这样可以不需要考虑存储空间的大小问题。
def Singleton(cls):
instances = {}
def _singleton(*args, **kw):
if cls not in instances:
instances[cls] = cls(*args, **kw)
return instances[cls]
return _singleton