每日一题之最大子数组和

该文章介绍了如何使用动态规划解决找到一个整数数组中具有最大和的连续子数组的问题。状态转移方程为dp[i]=max(nums[i],dp[i-1]+nums[i]),通过遍历数组并更新dp数组,可以找到最大子数组和。
摘要由CSDN通过智能技术生成

题目链接

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • 104 <= nums[i] <= 104

  1. 定义状态:
    • dp[i] 表示以 nums[i] 结尾的连续子数组的最大和。
  2. 定义状态转移方程:
    • i = 0 时,dp[i] = nums[0],即以第一个元素结尾的连续子数组的最大和就是第一个元素本身。
    • i > 0 时,dp[i] = max(nums[i], dp[i-1] + nums[i]),即以第 i 个元素结尾的连续子数组的最大和为第 i 个元素本身或者第 i 个元素加上前面的连续子数组的最大和。
  3. 遍历整个数组,更新 dp 数组的同时记录最大和。
  4. 最终结果为 dp 数组中的最大值。
def maxSubArray(nums):
    dp = [0] * len(nums)  # 定义dp数组,初始化为0
    dp[0] = nums[0]  # 初始化dp[0]为第一个元素

    for i in range(1, len(nums)):
        dp[i] = max(nums[i], dp[i-1] + nums[i])  # 状态转移方程

    return max(dp)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值