每日一题之判断子序列

判断子序列

题目链接

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

示例 1:

输入:s = "abc", t = "ahbgdc"
输出:true

示例 2:

输入:s = "axc", t = "ahbgdc"
输出:false

提示:

  • 0 <= s.length <= 100
  • 0 <= t.length <= 10^4
  • 两个字符串都只由小写字符组成。

首先,我们定义一个二维布尔数组 dp,其中 dp[i][j] 表示字符串 t 的前 i 个字符是否包含字符串 s 的前 j 个字符作为子序列。我们的目标是求出 dp[t.length()][s.length()]。

动态规划的转移方程如下:

  • 当 s[j] != t[i] 时,dp[i][j] = dp[i-1][j]。这表示如果当前考察的字符 t[i] 和 s[j] 不相等,那么 t 的前 i 个字符是否包含 s 的前 j 个字符作为子序列的结果与 t 的前 i-1 个字符是否包含 s 的前 j 个字符作为子序列的结果相同。

  • 当 s[j] == t[i] 时,我们有两种选择:

    • 我们可以选择使用 t[i] 来匹配 s[j],此时我们需要查看 t 的前 i-1 个字符是否包含 s 的前 j-1 个字符作为子序列,这就是 dp[i-1][j-1]。
    • 我们也可以选择不使用 t[i] 来匹配 s[j],即我们跳过 t[i],查看 t 的前 i-1 个字符是否包含 s 的前 j 个字符作为子序列,这就是 dp[i-1][j]。

    因此,当 s[j] == t[i] 时,dp[i][j] = dp[i-1][j-1] || dp[i-1][j]。如果 t 的前 i-1 个字符包含 s 的前 j-1 个字符作为子序列,或者 t 的前 i-1 个字符包含 s 的前 j 个字符作为子序列,那么 t 的前 i 个字符就包含 s 的前 j 个字符作为子序列。

下面是使用 Python 实现的代码:

def isSubsequence(s, t):
    m, n = len(t), len(s)
    dp = [[False] * (n + 1) for _ in range(m + 1)]
    
    # 当 s 为空字符串时,它是任何字符串的子序列
    for i in range(m + 1):
        dp[i][0] = True

    for i in range(1, m + 1):
        for j in range(1, min(i + 1, n + 1)):  # j 不能大于 i
            if t[i - 1] == s[j - 1]:
                dp[i][j] = dp[i - 1][j - 1] or dp[i - 1][j]
            else:
                dp[i][j] = dp[i - 1][j]

    return dp[m][n]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值