5. 对称边界条件(Symmetry)
- 对称边界条件(Symmetry)用来模拟理想电壁对称面或者理想磁对称面。
- 在HFSS中,如果使用对称边界条件,会沿着对称面将模型一分为二,在建模时只创建模型的一个部分,这样能够减少物体模型的几何尺寸和设计的复杂性,有效地缩短问题求解的时间
~~ 使用对称边界条件,在定义对称面时需要遵循以下几个原则:
~~~~
① 任对称面必须暴露在背景中
~~~~
② 对称面必须定义在平面表面上,不能定义在曲面上
~~~~
③ 同一个设计最多只能定义3个相正交的对称面
- 在应用对称边界条件之前,用户首先需要确定对称面的类型
~~ HFSS 中有理想电壁和理想磁壁两种类型的对称面:
~~~~
① 如果电场垂直于对称面对称,那么就使用理想电壁对称面
~~~~
② 如果磁场垂直于对称面对称,那么就使用理想磁壁对称面
-
如图1 所示的矩形波导截面能很好地说明这两种类型对称面的区别,图中给出了波导电场主模(TE 10 _{10} 10模)示意图
-
波导有两个对称面,一个是水平方向上经过波导中心的对称面,另一个是竖直方向上经过波导中心的对称面
-
在水平方向的对称面上,电场垂直于该对称面且对称分布,磁场平行于该对称面且幅度不变,因此该平面为理想电壁对称面
-
在竖直方向的对称面上,磁场垂直于该对称面且对称分布,电场平行于该对称面且幅度不变,因此该平面为理想磁壁对称面
-
在HFSS中,如果使用对称边界条件,我们只需要构造模型的一部分,在这个时候模型端口的尺寸发生了变化,所以在端口处的电压、电流和功率都有可能与完整的物体模型有差异,这样子物体模型端口的特性阻抗会随之改变。
-
为了使在应端口用对称边界条件后,模型的端口特性和原端口保持一致,在定义对称边界条件时需要正确地设置图2所示的阻抗倍乘器(Impedance Multiplier)
图2 阻抗倍乘器设置对话框 -
三种端口的特性阻抗的计算方法:
① Z p i Z_{pi} Zpi——功率/电流阻抗,用功率P和电流I来计算,适合微带天线模型
Z p i = P I ⋅ I Z_{pi}=\frac{P}{\mathbf{I\cdot I}} Zpi=I⋅IP
② Z p u Z_{pu} Zpu——功率/电压阻抗,用功率P和电压U来计算,适合缝隙类结构
Z p i = U ⋅ U P Z_{pi}=\frac{\mathbf{U\cdot U}}{P} Zpi=PU⋅U
③ Z u i Z_{ui} Zui——电压/电流阻抗,用电压U和电流I来计算,适合TEM波
Z p i = Z p i Z p u = U ⋅ U I ⋅ I Z_{pi}=\sqrt{Z_{pi}Z_{pu}}=\mathbf{\sqrt{\frac{U\cdot U}{I\cdot I}}} Zpi=ZpiZpu=I⋅IU⋅U
其中端口的功率 P P P,电压 U U U以及电流 I I I可以通过场直接计算:
~~~~~~ 流经端口功率:
P = ∮ S E × H d S \mathbf{P} =\oint_{S}^{}{\mathbf{{E}\times{H}}d\mathbf{S}} P=∮SE×HdS
~~~~~~ 端口处电流可以根据安培定律计算得出:
I = ∮ l H d l \mathbf{I} =\oint_{l}^{}{\mathbf{H}d\mathbf{l}} I=∮lHdl
~~~~~~ 端口处电压可以根据端口处电场积分计算得出:
U = ∮ l E d l \mathbf{U} =\oint_{l}^{}{\mathbf{E} d \mathbf{l}} U=∮lEdl -
因为在端口处功率和电流的定义明确,且更易于计算
-
所以默认情况下,HFSS通过功率和流来计算端口处的特性阻抗 Z p i Z_{pi} Zpi
-
用户也可以设定计算 Z p u Z_{pu} Zpu和 Z u i Z_{ui} Zui,因为端口处的电压是沿着用户定义的积分线积分计算而来的
-
所以为了计算算 Z p u Z_{pu} Zpu和 Z u i Z_{ui} Zui,用户必须设定端口的积分线。
-
如图 1 所示
① 当对称面是理想电壁对称面时,模型沿着理想电壁对称面对称地一分为二,此时端口处的电压和功率都只有完整模型的 1 2 \mathbf{\frac{1}{2}} 21,根据特性阻抗计算公式 Z p i = U ⋅ U P Z_{pi}=\frac{\mathbf{U\cdot U}}{P} Zpi=PU⋅U可以知道,此时计算出的特性阻抗只是完整模型的 1 2 \mathbf{\frac{1}{2}} 21,因此,这种情况下,阻抗倍乘器的值需要设置为 2 \mathbf{2} 2
② 同理,当对称面是理想磁壁对称面时,模型沿着理想磁壁对称面对称地一分为二,此时端口处电压不变,功率只有完整模型的 1 2 \mathbf{\frac{1}{2}} 21,根据特性阻抗计算 Z p i = U ⋅ U P Z_{pi}=\frac{\mathbf{U\cdot U}}{P} Zpi=PU⋅U可以知道,此时计算出的特性阻抗是完整模型的两倍,因此,这种情况下,阻抗倍乘器的值需要设置为 0.5 \mathbf{0.5} 0.5
③ 当同时应用了理想电壁对称面和理想磁壁对称面后,端口处的电压是原来的 1 2 \mathbf{\frac{1}{2}} 21,功率是原来的 1 4 \mathbf{\frac{1}{4}} 41,,根据特性阻抗计算公式 Z p i = U ⋅ U P Z_{pi}=\frac{\mathbf{U\cdot U}}{P} Zpi=PU⋅U可以知道,计算出的特性阻抗和完整模型的特性阻抗一样,因此,这种情况下,不需要设置阻抗倍乘器(因为阻抗倍乘器的默认值为 1 \mathbf{1} 1)。
对称边界条件的设置操作步骤:
~~
在设指对称边界的时候需要先确定我们所需的边界条件类型是理想电壁对称还是理想磁壁对称,然后沿着对称面将模型一分为二,,建模时只需要创建模型的一半
~~
如图 3 所示
~~
① 选中需要设置为对称边界条件的物体表面
~~
② 从主菜单栏选择【HFSS】👉【Boundaries】👉【Assign】👉【Symmetry】操作命令,或者在三维模型窗口内单击标右键,从弹出菜单中选择【Assign Boundary】👉【Symmetry】操作命令打开图 4 所示的 Symmetry Boundaries (对称边界条件设置)对话框
~~ ③ 在该对话框中
~~~~~~~ Name 栏输入对称边界条件的名称默认名称为 Symn
~~~~~~~ SymmetryInfinite 栏选择堆成边界条件类型,其中Perfect E 是理想电壁对称面,Perfect H 是理想磁壁对称面
~~~~~~~ 单击Edit Port Impedance Multiplier 按钮,设置阻抗倍乘器(电壁为2 磁壁为0.5)
~~~~~~~ 最后单击【OK】按钮,完成对称边界条件的设置
~~ ④ 设置完成后,如图 5 所示边界条件的名称会自动添加到工程树中的 Boundaries 节点下
~

6. 阻抗边界条件 (Impedance)
- 阻抗边界条件 (Impedance)用来模拟已知阻抗值的电阻性表面。
- 在图 7 所示的威尔金森(Wilkinson)功分器在HFSS中,链接两个导体间的薄膜电阻在HFSS中就可以使用阻抗边界条件来实现
- 如图8所示,在设置阻抗边界条件的时候,需要设置好电阻值 R S R_S RS和 X S X_S XS,单位是 Ω / s q u r e \Omega/squre Ω/squre,表面的阻抗值是 Z S = R S + j X S Z_S=R_S+jX_S ZS=RS+jXS,所以阻抗边界条件上的表面电场切向量为 E t a n = Z S ( n × H t a n ) \mathbf{E_{tan}}=Z_S\mathbf{(n \times H_{tan})} Etan=ZS(n×Htan)
- 式中:
Z
S
Z_S
ZS:前面定义的以
Ω
/
s
q
u
r
e
\Omega/squre
Ω/squre为单位的表面阻抗
n ~~~~~~~~~~\mathbf{n} n:表面法向单位矢量
H t a n ~~~~~~~~~~\mathbf{H_{tan}} Htan:磁场表面切向分量 - 其中: 电阻值 R S R_S RS和电抗值 X S X_S XS可以通过集总的电抗值 Z 集总 Z_{集总} Z集总、表面长度 L L L和宽度 W W W这3个参数计算得出
- 定义电流流经的方向为表面长度 L L L的方向
- s q u a r e square square的个数 N = L / W N = L/W N=L/W
- 单位表面阻抗 Z S = Z 集总 / N Z_{S}=Z_{集总}/N ZS=Z集总/N
- 以图7为例,Wilkinson中的薄膜电阻的阻值为35 Ω \Omega Ω,薄膜电阻的长与宽分别是3.5密耳和4密耳(密耳是一个长度的单位,代表千分之一英寸,可被写做mil或thou,1 mil = 0.0254 mm)
- N = 3.5 / 4 = 0.875 N = 3.5/4 = 0.875 N=3.5/4=0.875
- 单位电阻 R S = 35 / 0.875 = 40 Ω / s q u a r e R_{S}=35/0.875=40~\Omega/square RS=35/0.875=40 Ω/square
- 单位电抗 X S = 0 Ω / s q u a r e X_{S}=0~\Omega/square XS=0 Ω/square
- 如图9所示,分别在Resistance输入40,在Reactance输入0
阻抗边界条件的设置操作步骤:
~~
如图 10 所示
~~
① 选中需要设置为阻抗边界条件条件的物体表面
~~
② 从主菜单栏选择【HFSS】👉【Boundaries】👉【Assign】👉【Impedance】操作命令,或者在三维模型窗口内单击标右键,从弹出菜单中选择【Assign Boundary】👉【Impedance】操作命令打开图 11 所示的 Impedance Boundaries (阻抗边界条件设置)对话框
~~
③ 在该对话框中
~~~~~~~
Name 栏:输入阻抗边界条件的名称默认名称为 Impedn
~~~~~~~
Resistance输入表面电阻值,在Reactance输入表面电抗值,他们的单位都是
Ω
/
s
q
u
a
r
e
\Omega/square
Ω/square
~~~~~~~
Infinite Ground Plane:是否需要将理想导体边界设定为无限大地平面边界
~~~~~~~
最后单击【OK】按钮,完成阻抗边界条件的设置
~~
④ 设置完成后,如图 12 所示边界条件的名称会自动添加到工程树中的 Boundaries 节点下
~
7. 集总RLC边界条件(Lumped RLC)
- 集总RLC边界条件(Lumped RLC)是用一组串联或并联的电阻、电感和电容来模拟物体的表面
- 与阻抗边界条件相似,集总RLC边界条件的表面切向电场分量为 E t a n = Z S ( n × H t a n ) \mathbf{E_{tan}}=Z_S\mathbf{(n \times H_{tan})} Etan=ZS(n×Htan)
- 式中:
Z
S
Z_S
ZS:
Z
S
=
R
S
+
j
X
S
Z
S
Z_S=R_S+jX_{S}Z_S
ZS=RS+jXSZS是以
Ω
/
s
q
u
r
e
\Omega/squre
Ω/squre为单位的表面阻抗
n ~~~~~~~~~~\mathbf{n} n:表面法向单位矢量
H t a n ~~~~~~~~~~\mathbf{H_{tan}} Htan:磁场表面切向分量 - 与阻抗边界条件不同的是,在这里不用计算以 Ω / s q u r e \Omega/squre Ω/squre为单位的表面阻抗,我们只需要给出集总 R / L / C R/L/C R/L/C的真实值,系统会自动计算工作频率下集总RLC边界以 Ω / s q u r e \Omega/squre Ω/squre为单位的表面阻抗
- 对于图14的威尔金森功分器,连接两个导体间的薄膜电阻可以试咏集总RLC边界条件实现
集总RLC边界条件的设置操作步骤:
~~
如图 15 所示
~~
① 选中需要设置为集总RLC边界条件的物体表面
~~
② 从主菜单栏选择【HFSS】👉【Boundaries】👉【Assign】👉【Lumped RLC】操作命令,或者在三维模型窗口内单击标右键,从弹出菜单中选择【Assign Boundary】👉【Lumped RLC】操作命令打开图 16 所示的 Lumped RLC Boundaries (阻抗边界条件设置)对话框
~~
③ 在该对话框中
~~~~~~~
Name 栏:输入集总RLC边界条件的名称默认名称为 LumpRLCn
~~~~~~~
RLC Type:Serial 串联
~~~~~~~~~~~~~~~~~~~~~~~~~~
Parallel 并联
~~~~~~~
R,L,C Values栏:Resistance 输入集总电阻
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Inductance 输入集总电感
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Capacitance 输入集总电容
~~~~~~~
Current Flow Line:定义电流方向,如图18所示
~~~~~~~
最后单击【OK】按钮:完成集总RLC边界条件的设置
~~
④ 设置完成后,如图 17 所示边界条件的名称会自动添加到工程树中的 Boundaries 节点下
~
8. 分层阻抗边界条件(Layere Impedance)
- 分层阻抗边界条件(Layere Impedance)是用 多层结构 \mathbf{\color{red}{多层结构}} 多层结构将物体表面模拟为一个阻抗表面,其效果和 阻抗边界条件 \mathbf{\color{red}{阻抗边界条件}} 阻抗边界条件相同
- 与阻抗边界不同的点:对于分层阻抗边界条件,HFSS是根据输入的分层结构数据和表面粗糙度来计算表面表面电阻值和表面电抗值
- 注:分层阻抗边界条件不支持快速扫频 \mathbf{\color{red}{ 注:分层阻抗边界条件不支持快速扫频}} 注:分层阻抗边界条件不支持快速扫频
分层阻抗边界的设置操作步骤:
~~
如图 19 所示
~~
① 选中需要设置为分层阻抗边界的物体表面
~~
② 从主菜单栏选择【HFSS】👉【Boundaries】👉【Assign】👉【Layere Impedance】操作命令,或者在三维模型窗口内单击标右键,从弹出菜单中选择【Assign Boundary】👉【Layere Impedance】操作命令打开图 20 所示的Layere Impedance Boundaries:General (分层阻抗边界条件设置)对话框
~
~~
③ 在该对话框中
~~~~~~~
Name 栏:输入分层阻抗边界条件的名称默认名称为 Layeredn
~~~~~~~
Surface Roughness:输入表面层的粗糙程度
~~~~~~~
Infinite Ground Plane:是否需要将理想导体边界设定为无限大地平面边界
~~~~~~~
最后单击【下一步】按钮:进入下一步设置,如图 21 所示的Layere Impedance Boundaries:Layers(分层阻抗边界条件设置)对话框
~~
④ 在该对话框中
~~~~~~~
One sided/Two sided:如果选择的是Two sided,可以在复选框中选择是否是壳体单元(Shell Element)
~~~~~~~
中间框体:设置分层结构的层数、每一层的厚度、每一层的材料
~~~~~~~
New Layer:添加新层数
~~~~~~~
Remove Layer:删除上面分层结构的层数
~~~~~~~
Impedance Value:计算上面分层结构的阻抗值,其中
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Test Frequency 测试工频测试 点击Calculate
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Real:计算结果是电阻值
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Imag: 计算结果是电抗值
~~~~~~~
最后单击【完成】按钮:完成分层阻抗边界条件的设置
~~
⑤ 设置完成后,如图 22 所示边界条件的名称会自动添加到工程树中的 Boundaries 节点下
~