动态规划专题复习(二)最值问题

动态规划专题复习(二)最值问题

最近在复习算法,为明年的春招做准备,欢迎互关呀,共同学习,进步!

何为最值问题?

最值问题就是给出一个问题的最优解,这种最优解,可以是一个问题能求得的最大最小值,一种最优路径等等。

以下问题均摘取自leetcode

1.最长回文字串

在这里插入图片描述

暴力

如果使用暴力递归就是遍历所有字串,在遍历字串过程中,判断字串是否是回文串且记录长度

    /**
     * 判断是否是回文串
     * @param str
     * @return
     */
    public boolean isPalindromic(String str){
        int len = str.length();
        for(int i = 0;i < len / 2;i++){
            if(str.charAt(i) != str.charAt(len - i - 1)){
                return false;
            }
        }
        return true;
    }

    /**
     * 暴力解法
     * @param s
     * @return
     */
    public String longestPalindrome(String s) {
        if(s.equals("")){
            return "";
        }
        int len = s.length();
        String result = null;
        int max = 0;
        //遍历所有子串
        for(int i = 0;i < len;i++){
            for(int j = i + 1; j <= len;j++){
                String str = s.substring(i,j);
                //判断是否是回文串
                if(isPalindromic(str) && str.length() > max){
                    result = s.substring(i,j);
                    //是回文串则记录该子串长度
                    max = Math.max(result.length(),max);
                }
            }
        }
        return result;
    }

记忆化搜索

使用暴力递归的时间复杂度很高,遍历子串是O(n2),判断是否是回文串则是O(n),则时间复杂度总的就是O(N3),我们要使用记忆化搜索来降低重复的判断

定义一个记录数组:P(i,j),i是指向从字符串S开始的下标,j是指向从字符串尾部开始的下标

在这里插入图片描述

那么

在这里插入图片描述

那么,如果我们想知道 P(i,j)是不是回文串,只需要知道Pi+1,j−1)是不是回文串且第i个字符和第j个字符相同即可判断出P(i,j)是回文串

在这里插入图片描述

    public String longestPailndrome(String s){
        int length = s.length();
        //相当于dp数组,记录中间结果
        boolean[][] P = new boolean[length][length];
        //最大字串
        String maxPal = "";
        //遍历所有的长度
        for (int len = 1; len <= length; len++) { 
            //从字符串起始遍历字串
            for (int start = 0; start < length; start++) {
                //字串结束下标 = 起始下标 + 字串长度 - 1
                int end = start + len - 1;
                //下标已经越界,结束本次循环
                if (end >= length) { 
                    break;
                }
                //P(i,j)=(P(i+1,j−1)&&S[i]==S[j]),长度为 1 和 2 的单独判断下
                P[start][end] = (len == 1 || len == 2 || P[start + 1][end - 1]) && s.charAt(start) == s.charAt(end); 
                if (P[start][end]) {
                    //subString(begin,end) ===> 不包括end
                    maxPal = s.substring(start, end + 1);
                }
            }
        }
        return maxPal;
    }

动态规划

记忆化搜索是自顶向下的过程,那么,动态规划就是自底向上的过程,是一个逆向过程

    /**
     * 动态规划
     * @param s
     * @return
     */
    public String longestPalindrome1(String s) {
        int length = s.length();
        //最长回文字串
        String result = "";
        //dp数组
        boolean[][] dp = new boolean[length][length];
        //对比记忆化搜索就是逆向遍历的过程
        //i向着字符串开始处遍历,相当于原来的start
        for (int i = length - 1; i >= 0; i--) {
            //j向着字符串尾部遍历,相当于之前的end
            for (int j = i; j < length; j++) {
                //j - i 代表长度减去 1 ===> 字串长度 = end - start + 1
                //状态转移方程 ;P(i,j)=(P(i+1,j−1)&&S[i]==S[j])
                dp[i][j] = s.charAt(i) == s.charAt(j) && (j - i < 2 || dp[i + 1][j - 1]);
                if (dp[i][j] &&  j - i + 1 > result.length()) {
                    result = s.substring(i, j + 1);
                }
            }
        }
        return result;
    }

2.最小路径和

在这里插入图片描述

暴力

递归树如下

在这里插入图片描述

    /**
     * 暴力解法
     * @param grid
     * @return
     */
    public int minPathSum2(int[][] grid) {
        //从启点开始
        return minpath(grid,0,0);
    }
    
    private int minpath(int[][] grid, int i, int j) {
        if (i == grid.length || j == grid[0].length)
            return Integer.MAX_VALUE;
        //判断是否到达终点
        if(i == grid.length-1 && j == grid[0].length - 1)
            return grid[i][j];
        return grid[i][j] + Math.min(minpath(grid,i + 1,j),minpath(grid,i,j + 1));
    }

记忆化搜索

从上文的递归树中可以看到有很多重复的计算,利用记忆化搜索暂存这些计算结果

    /**
     * 记忆化搜索
     * @param grid
     * @return
     */
    public int minPathSum(int[][] grid) {
        int[][] dp = new int[grid.length+1][grid[0].length+1];
        //从启点开始
        return minpath1(grid,0,0,dp);
    }

    private int minpath1(int[][] grid, int i, int j,int[][] dp) {
        if (i == grid.length || j == grid[0].length)
            return Integer.MAX_VALUE;
        //判断是否到达终点
        if(i == grid.length-1 && j == grid[0].length - 1)
            return grid[i][j];
        if(dp[i][j] != 0){
            return dp[i][j];
        }
        //暂存计算结果
        dp[i][j] = grid[i][j] + Math.min(minpath1(grid,i + 1,j,dp),minpath1(grid,i,j + 1,dp));
        return dp[i][j];
    }

动态规划

那么动态规划就是一个自底向上的过程

在这里插入图片描述

    public int minPathSum1(int[][] grid) {
        for(int i = 0;i<grid.length;i++){
            for(int j = 0;j<grid[0].length;j++){
                //第一列
                if(i == 0 && j != 0) grid[i][j] += grid[i][j - 1];
                //第一行
                if(i != 0 && j == 0) grid[i][j] += grid[i - 1][j];
                //dp动态转移方程:grid[i][j] += Math.min(grid[i][j - 1], grid[i - 1][j]);
                if(i != 0 && j != 0) grid[i][j] += Math.min(grid[i][j - 1], grid[i - 1][j]);
            }
        }
        return grid[grid.length-1][grid[0].length - 1];
    }

3.打家劫舍一

在这里插入图片描述

暴力

    /**
     * 暴力递归
     * @param nums
     * @return
     */
    public int rob1(int[] nums){
        return tryRob(0,nums);
    }
    
    public int tryRob(int index,int[] nums){
        if(index >= nums.length){
            return 0;
        }
        int max = 0;
        for(int i = index;i < nums.length;i++){
            //max:之前能偷取到的最大金额
            //tryRob(i + 2)继续偷取下下家房子,然后算出偷上下下家房子后的总金额
            max = Math.max(max,nums[i] + tryRob(i + 2,nums));
        }
        return max;
    }

记忆化搜索

    /**
     * 记忆化搜索
     * @param nums
     * @return
     */
    public int rob2(int[] nums){
        int[] dp = new int[nums.length];
        return tryRob1(0,nums,dp);
    }

    public int tryRob1(int index,int[] nums,int[] dp){
        if(index >= nums.length){
            return 0;
        }
        if(dp[index] != 0){
            return dp[index];
        }
        int max = 0;
        for(int i = index;i < nums.length;i++){
            max = Math.max(max,nums[i] + tryRob1(i + 2,nums,dp));
        }
        dp[index] = max;
        return max;
    }

动态规划

由于不可以在相邻的房屋闯入,所以在当前位置 n 房屋可盗窃的最大值,要么就是 n-1 房屋可盗窃的最大值,要么就是 n-2 房屋可盗窃的最大值加上当前房屋的值,二者之间取最大值,dp[i] 代表前 i 个房子在满足条件下的能偷窃到的最高金额。

在这里插入图片描述

    public int rob(int[] nums) {
        if(nums.length == 0){
            return 0;
        }
        int[] dp =new int[nums.length + 1];
        dp[0] = 0;
        dp[1] = nums[0];
        for(int i = 2;i <= nums.length;i++){
            //状态转移方程:dp[i] = max{dp[i-1],dp[i-2]+nums[i-1]}
            dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i-1]);
        }
        return dp[nums.length];
    }

4.打家劫舍二

在这里插入图片描述

这道题目和第一道打家劫舍的区别就是这道题房屋是环状的,第一道是线性排列,也就是说在这里,头尾的房子是相邻的,只能二选一,因此,我们可以将这个题目分解为两个第一类的打家劫舍

  • 在不偷窃第一个房子的情况下最大金额是 p1;
  • 在不偷窃最后一个房子的情况下最大金额是 p2 。
  • 取p1,p2最大值

动态规划

    public int rob(int[] nums) {
        if(nums.length == 0) return 0;
        if(nums.length == 1) return nums[0];
        return Math.max(tryRob(Arrays.copyOfRange(nums, 0, nums.length - 1)),
                tryRob(Arrays.copyOfRange(nums, 1, nums.length)));
    }


    public int tryRob(int[] nums) {
        if(nums.length == 0){
            return 0;
        }
        int[] dp =new int[nums.length + 1];
        dp[0] = 0;
        dp[1] = nums[0];
        for(int i = 2;i <= nums.length;i++){
            //状态转移方程:dp[i] = max{dp[i-1],dp[i-2]+nums[i-1]}
            dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i-1]);
        }
        return dp[nums.length];
    }

5.最大子序和

在这里插入图片描述

暴力

    /**
     * 暴力穷举
     * @param nums
     * @return
     */
    public int maxSubArray1(int[] nums) {
        int sum;
        int max = Integer.MIN_VALUE;
        //穷举所有子序
        for(int i = 0;i < nums.length;i++){
            sum = 0;
            for(int j = i ;j < nums.length;j++){
                sum += nums[j];
                if(sum > max){
                    max = sum;
                }
            }
        }
        return max;
    }

动态规划

状态转移方程:sum(i) = Max{sum(i - 1) + nums[i] ,nums[i]}

sum(i) —> 代表从0开始的到i的闭区间中,所有连续子数组的和的最大值

    /**
     * 动态规划
     * @param nums
     * @return
     */
    public int maxSubArray2(int[] nums) {
       int[] dp = new int[nums.length];
       dp[0] = nums[0];
       //记录子数组最大和 
       int max = dp[0];
       for(int i = 1;i < nums.length;i++){
           //状态转移方程:sum(i) = Max{sum(i - 1) + nums[i] ,nums[i]}
           dp[i] = Math.max(dp[i - 1] + nums[i],nums[i]);
           if(dp[i] > max){
               max = dp[i];
           }
       }
       return max;
    }

6.最大子序积

在这里插入图片描述

动态规划

最大乘积可以由正数正数和负数负数得到,因此,需要同时记录下最大值和最小值。

在这里插入图片描述

    public int maxProduct(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        //记录结果
        int result = nums[0];
        int dpMax = nums[0];
        int dpMin = nums[0];
        for (int i = 1; i < nums.length; i++) {
            int curMax = Math.max(Math.max(dpMax * nums[i], dpMin * nums[i]), nums[i]);
            int curMin = Math.min(Math.min(dpMax * nums[i], dpMin * nums[i]), nums[i]);
            result = Math.max(result, curMax);
            dpMax = curMax;
            dpMin = curMin;
        }
        return result;
    }

7.最佳买卖股票时机

在这里插入图片描述

暴力

    public int maxProfit(int[] prices) {
        int max = 0;
        //从第一个元素遍历到倒数第二个元素
        for(int i = 0;i < prices.length-1;i++){
            //从第二个元素遍历到最后一个元素,保证买入在卖出前
            for(int j = i+1;j < prices.length;j++){
                int profile = prices[j] - prices[i];
                if(profile > max){
                    max = profile;
                }
            }
        }
        return max;
    }

动态规划

    public int maxProfitWithDp1(int[] prices) {
        if(prices.length == 0){
            return 0;
        }
        //最小买入价
        int min = prices[0];
        //最大利润
        int max = 0;
        for(int i = 0;i<prices.length;i++){
            //找出最小买入价
            min = Math.min(prices[i],min);
            //找到最大利润
            max = Math.max(max,prices[i] - min);
        }
        return max;
    }

其实这道题目虽然在leetcode上归类为动态规划,但是我并不觉得这道题目在动态规划思想上有很多的体现

8.最佳买卖股票时机含冷冻期

在这里插入图片描述

状态分析

主要有三种状态:

  • 持有股票
  • 卖出股票
  • 冷冻期(什么都不干)

由于存在三种状态,所以时间复杂度可以达到O(3^n)

状态转换图:

在这里插入图片描述

推导状态转移方程:

在这里插入图片描述

动态规划

    public int maxProfit(int[] prices) {
        int sold = 0;
        int rest = 0;
        int hold = Integer.MIN_VALUE;
        for(int i : prices){
            int preSold = sold;
            //状态转移方程:
                // newHold = Max{oldHold,rest - price[i]}
                // newSold = hold + price[i]
                // newRest = Max{oldRest,oldSold}
            sold = hold + i;
            hold = Math.max(hold,rest - i);
            rest = Math.max(preSold,rest);
        }
        return Math.max(sold,rest);
    }

9.买卖股票的最佳时机 II尽可能多的交易

在这里插入图片描述

暴力

    public int maxProfit(int[] prices) {
        return getMaxProfit(prices,0);
    }

    /**
     * 暴力
     * @param prices
     * @param start
     * @return
     */
    public int getMaxProfit(int prices[], int start){
        //边界条件
        if(start >= prices.length){
            return 0;
        }
        //最大利润
        int max = 0;
        for(int i = start;i < prices.length;i++){
            int maxProfit = 0;
            for(int j = i + 1;j < prices.length;j++){
                if(prices[i] < prices[j]){
                    //尽可能多的交易,在j卖出后,马上在j(即i + 1)买入,然后就继续寻找下一个卖出点
                    int profit = prices[j] - prices[i] + getMaxProfit(prices,i+1);
                    if(maxProfit < profit){
                        maxProfit = profit;
                    }
                }
            }
            if(max < maxProfit){
                max = maxProfit;
            }
        }
        return max;
    }

同一天可以先卖出,再买入(等于这天没有操作),比如 [1, 2, 3],我们可以第一天买入,第二天卖出得 2 - 1, 第二天再买入,第三天卖出得3 - 2,总共2,相当于第二天不用操作也行.受上一题思路,如果存在数组为[a1, a2, a3] ,那么 a3 - a1 = (a2 - a1) + (a3 - a2),所以只看今明两天,只要明天比今天贵,那今天买明天卖就赚到,否则不做操作就是相当于+0,以此类推即可。

    /**
     * 贪心算法
     * @param prices
     * @return
     */
    public int maxProfit1(int[] prices) {
        int result = 0;
        for(int i = 1;i < prices.length;i++){
            result += Math.max(0,prices[i] - prices[i - 1]);
        }
        return result;
    }

动态规划

对于这道题目,我认为python写起来更易懂

状态图:

在这里插入图片描述

    def maxProfit(self, prices: List[int]) -> int:
        if not prices:
            return 0
        n = len(prices)
        dp = [[0]*2 for _ in range(n)]
        # dp[i][0]表示第i天不持有股票, dp[i][1]表示第i天持有股票
        dp[0][0], dp[0][1] = 0, - prices[0]
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
        return dp[n-1][0]
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值