第八篇:导数(Derivatives)

1、实例1 : f(a)=3a;

 

                        

  • 当a=2时,f(a)=6;
  • 当a=2.001时,f(a)=6.003;
  • 即函数f(a)在a=2时,它的斜率(slope)为k= (6.003-6)/(2.001-2) =3,这就是表示,当微小改变量a的值,??(?)/??=3等价于导数表达式;
  • 实际上函数f(a)在某一点的斜率就是函数在该点的导数,更正式的定义为在上图中那个红色的小三角形中,高除以宽,即为0.003/0.001;
  • 对于一条直线,在例子中函数的斜率,在任何地方都相等;

 

2、实例2:f(a)=?2;

 

                     

  • 当a=2时,f(a)=4;
  • 当a=2.001时,f(a)≈4.004;
  • 此时函数f(a)的斜率为上图红色三角形的高除以宽,即k=0.004/0.001=4,也称为函数f(a)在a=2处的导数,写成微积分的形式:??(?)/??=4;
  • 查阅导数公式表:f'(a)=2a,所以函数的导数在不同的曲线位置,导数的值是不一样的;

 

3、实例3:f(a)=_{lna};

 

                     

 

  • 当a=2时,f(a)≈0.69315;
  • 当a=2.001时,f(a)≈0.69365;
  • 此时函数f(a)的斜率为上图红色三角形的高除以宽,即k=0.0005/0.001=0.5,也称为函数f(a)在a=2处的导数,写成微积分的形式:??(?)/??=0.5;
  • 查阅导数公式表:f'(a)=1/?,所以函数的导数在不同的曲线位置,导数的值是不一样的;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值