1、实例1 : f(a)=3a;
- 当a=2时,f(a)=6;
- 当a=2.001时,f(a)=6.003;
- 即函数f(a)在a=2时,它的斜率(slope)为k= (6.003-6)/(2.001-2) =3,这就是表示,当微小改变量a的值,??(?)/??=3等价于导数表达式;
- 实际上函数f(a)在某一点的斜率就是函数在该点的导数,更正式的定义为在上图中那个红色的小三角形中,高除以宽,即为0.003/0.001;
- 对于一条直线,在例子中函数的斜率,在任何地方都相等;
2、实例2:f(a)=?2;
- 当a=2时,f(a)=4;
- 当a=2.001时,f(a)≈4.004;
- 此时函数f(a)的斜率为上图红色三角形的高除以宽,即k=0.004/0.001=4,也称为函数f(a)在a=2处的导数,写成微积分的形式:??(?)/??=4;
- 查阅导数公式表:f'(a)=2a,所以函数的导数在不同的曲线位置,导数的值是不一样的;
3、实例3:f(a)=;
- 当a=2时,f(a)≈0.69315;
- 当a=2.001时,f(a)≈0.69365;
- 此时函数f(a)的斜率为上图红色三角形的高除以宽,即k=0.0005/0.001=0.5,也称为函数f(a)在a=2处的导数,写成微积分的形式:??(?)/??=0.5;
- 查阅导数公式表:f'(a)=1/?,所以函数的导数在不同的曲线位置,导数的值是不一样的;