
最优化
文章平均质量分 53
赵唯淞
哈尔滨工业大学 教授
展开
-
EM算法【图像迭代】
最近在读李航写的《统计学习方法》,想要迁移一些知识到图像重建领域,首先总结一下EM算法:EM算法算是机器学习中有些难度的算法之一,也是非常重要的算法,曾经被誉为10大数据挖掘算法之一,从标题可以看出,EM专治带有隐变量的参数估计,我们熟悉的MLE(最大似然估计)一般会用于不含有隐变量的参数估计,应用场景不同。首先举一个带有隐变量的例子吧,假设现在有1000人的身高数据,163、153、183、20...原创 2018-05-10 00:19:40 · 5814 阅读 · 2 评论 -
矩阵的秩最小化
为了求解问题因为它是非凸的,我们求解一个它的近似算法对于一个大的τ值,它可以用下列等式接近其中第一项为核范式(奇异值的和),第二项为Frobenius范式。Singular Value Thresholding (SVT) 奇异值阈值* 奇异值收缩(singular value shrinkage)*首先我们考虑一个秩为r非负的。对于每个τ≥0 的奇异值上,使它们趋于零。这也...转载 2019-06-26 19:40:35 · 6756 阅读 · 0 评论 -
常用矩阵范数
(1)矩阵的核范数:矩阵的奇异值(将矩阵svd分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩——低秩); (2)矩阵的L0范数:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏。 (3)矩阵的L1范数:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以近似表示稀疏; (4)矩阵的F范数:矩阵的各个元素...原创 2018-12-04 17:02:32 · 17930 阅读 · 0 评论 -
ADMM优化框架
交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种求解优化问题的计算框架, 适用于求解分布式凸优化问题,特别是统计学习问题。 ADMM 通过分解协调(Decomposition-Coordination)过程,将大的全局问题分解为多个较小、较容易求解的局部子问题,并通过协调子问题的解而得到大的全局问题的解。ADMM 最早分别由...原创 2018-11-04 23:41:55 · 7705 阅读 · 16 评论 -
总结一下优化算法关系【压缩传感】【图像逆问题】
首先是框架:最火的ADMMSplit-Bregman,很类似ADMM,是其缩放形式FISTA求解手段:ADMM-----------ALMSplit-Bregman---------Bregman距离FISTA------------近端梯度法原创 2018-06-17 21:40:25 · 1104 阅读 · 0 评论 -
用ADMM求解大型机器学习问题
从等式约束的最小化问题说起: 上面问题的拉格朗日表达式为: 也就是前面的最小化问题可以写为: ...转载 2018-06-02 13:44:00 · 1964 阅读 · 0 评论 -
l1范数最小化快速算法【文献阅读】
1:解决的问题模型如下: 或者约束条件可以适当的松弛,即为如下模型: 当然约束条件取l2l2范数,bb数据获取的比较准确,结果逼近的效果更好,防止过拟合。如果取l1l1 范数,则是获取的bb数据,受到污染比较严重。并且bb 本身就是稀疏的。这也是人的经验对于模型的成功也是很重要的。 2:几类优化算法 (1)梯度投影算法Gradient Projection Methods 原问题可以...翻译 2018-06-02 13:42:31 · 8908 阅读 · 1 评论 -
0、1、2范数与损失函数正则化
原创 2018-05-31 23:33:41 · 2549 阅读 · 0 评论 -
稀疏表示字典的显示【MATLAB实现】
本文主要是实现论文--基于稀疏表示的图像超分辨率《Image Super-Resolution Via Sparse Representation》中的Figure2,通过对100000个高分辨率和低分辨率图像块训练得到的高分辨率图像块字典,字典原子总数为512,图像块尺寸大小为9X9方法一:[cpp] view plain copyclc; clear all; % load dicti...原创 2018-06-04 17:59:32 · 2690 阅读 · 0 评论 -
Split-Bregman迭代方式
对于搞图像处理的人而言,不懂变分法,基本上,就没法读懂图像处理的一些经典文献。当然,这已经是10年之前的事情了。现在,如果不懂得Bregman迭代算法,也就没法读懂最近几年以来发表的图像处理的前沿论文了。国内的参考文献,基本上都是直接引用Bregman迭代算法本身,而对于其原理基本上找不到较为详细的论述。本文简要叙述当前流行的Bregman迭代算法的一些原理。1、简介近年来,由于压缩感知的引入,L...原创 2018-05-15 21:10:55 · 13261 阅读 · 6 评论 -
总结一些最优化算法(ADMM/FISTA)代码网站
优化算法:ADMM:https://blog.csdn.net/angel_yj/article/details/40587543https://blog.csdn.net/jbb0523/article/details/52134630http://web.stanford.edu/~boyd/papers/admm/http://mullover.me/2016/01/19...原创 2018-04-27 21:24:35 · 18103 阅读 · 4 评论 -
神经网络优化算法总结【SGD】---【Adam】
在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法?这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法。什么是优化算法?优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x)。模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失...转载 2018-05-10 23:01:10 · 9659 阅读 · 2 评论 -
梯度下降与EM算法
机器学习两个重要的过程:学习得到模型和利用模型进行预测。下面主要总结对比下这两个过程中用到的一些方法。一,求解无约束的目标优化问题这类问题往往出现在求解模型,即参数学习的阶段。我们已经得到了模型的表达式,不过其中包含了一些未知参数。我们需要求解参数,使模型在某种性质(目标函数)上最大或最小。最大似然估计:其中目标函数是对数似然函数。为了求目标函数取最大值时的theta。有两个关机键步骤,第一个是对...原创 2018-05-10 00:47:12 · 3866 阅读 · 0 评论 -
FISTA浅析
前言:FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA)。FISTA和ISTA都是基于梯度下降的思想,在迭代过程中进行了更为聪明(smarter)的选择,从而达到更快的迭代速度。理论证明:FISTA和ISTA的迭代收敛速度分别为O(1/k2)和O(1/k)。 本篇博文先从解决优化问题的传统方...转载 2019-07-21 23:23:19 · 5853 阅读 · 2 评论