如今距离暑期实习已经很久了,而今也已经要秋招,虽然经过实习,还有很多事情让自己坚定了接着做科研的想法。
这里将之前记录的暑期实习几个公司的面试问题简单记录一下。
阿里一面(40min,简历问题)
- 自我介绍
- 传统图像如何结合机器学习来做
- 随机森林介绍,产生过拟合的原因(每棵树的变量太多,树太少);SVM介绍,与Logistic比较(基础层面,应用层面),两种方法是如何解决过拟合与欠拟合问题,实际数据中如何应用的。
- CNN介绍,影响参数量有哪些因素?
- 怎么做多模型融合。
阿里二面(50min,简历问题+聊天)
- 说一遍项目,说一下传统的图像处理方法
- 介绍一下CNN的发展。为什么要局部连接?padding有哪些做法?为什么不能用全连接层直接做?
- 说一下做的论文,大致介绍,优缺点。
- 是否了解GAN,RNN,目标检测相关网络,都说一下。NLP是否了解,说一下。
- 业务问题:1) 很多卖家卖商品,会有图片与标题不一致的现象,虚假宣传,如何检测出这些卖家? 2) 有些标题会重复,反复强调某些物品,如何筛选出来?
阿里三面(8min光速面试)
- 论文发表了吗?懂NLP吗?代码能力如何?能来实习的时间?
- 谈谈正则化。L1的效果是什么,它怎么做到稀疏的?
腾讯一面(35min简历+场景题目)
- 简历,聊项目
- 讲讲U-Net,SVM,网络爬虫怎么应对反爬虫;Keras怎么搭建网络,说细节
- 如何检测中游戏的外挂(因为说玩qq飞车手游,所以问如何检测闪现挂)