图机器学习——3.2 PageRank 算法问题改进与延伸

本文探讨了PageRank算法在实践中遇到的死节点和局部陷阱问题,并介绍了通过添加传送机制进行改进的方法。特别关注了在推荐系统中如何利用PersonalizedPageRank实现非均匀随机游走,以提升商品间的相似度计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. PageRank 算法问题与改进

PageRank 算法在实际迭代过程中会遇到两个问题:

  • 死节点(dead ends)

产生此问题的原因是有些节点没有向外的连接,如下图的 b b b,那么就会导致最终重要性得分会变成0.

出现此问题后不满足列和为1的假设,最终求解会出现问题。

  • 局部陷阱(spider traps)

这种问题是由于所有的往外的连接都在一个小的组内,最终这个“陷阱”会吸收掉所有的重要性,如下图的 b b b所示。

这个问题在数学本身的求解上并不是问题,但出现局部陷阱后得到的并不是我们所期望的重要性得分。

解决上面两个问题的方法比较简单,在出现问题的节点上加入传送(teleports)机制:

  • β \beta β的概率按照已知的连接情况进行游走;
  • 1 − β 1-\beta 1β的概率随机跳到任意一个节点上.

若添加的是均匀传送且在出问题的节点上 β = 0 \beta=0 β=0,则转移矩阵可变为:

而在实际的操作中,我们可以在每一次转移时都进行随机传送的操作,则节点 j j j重要性得分计算方程变为:

r j = ∑ i → j β r i d i + ( 1 − β ) 1 N r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N} r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值