prim算法和并查集算法解决简单最小生成树问题

什么是最小生成树

在图{V,E}中,使用E中的边将V中所有的点联通,使其成为树,要求树中边权之和最小,这就是最小生成树。

prim算法

1.复杂度:O(n2)

2.适用范围:与dijkstra算法类似,不能处理负权边

3.思想:与dijkstra算法类似,松弛。找到距离源点(这里的源点任意)最近的点,如此循环。

4.代码实现:

int mp[maxn][maxn],in[maxn],d[maxn];
//d[maxn]数组记录从树出发到i点的距离最小值,in[maxn]记录i点是否在集合中
int V;
int prim()
{
    for(int i = 1; i<=V; i++)
    {
        in[i] = 0;
        d[i] = INF;
    }
    d[1] = 0;
    int res = 0,sum = 0;
    while(true)
    {
        int pos = -1;
        for(int i = 1; i<=V; i++)
        {
            if(!in[i] && (pos == -1 || d[i]<d[pos]))
                pos = i;
        }
        if(pos == -1 || d[pos] == INF) break;
        in[[pos] = 1;
        res += d[pos];
        sum++;
        for(int i = 1; i<=V; i++)
        {
            d[i] = min(d[i],d[pos]+mp[pos][i]);
        }
    }
    if(sum == V) return res;
    else return -1;
}

并查集计算最小生成树

1.复杂度:O(n2)

2.适用范围:朴素并查集可以解决普通最小生成树,可以通过加入其他算法解决负权问题

3.思想:沿着最短边找根,当然,如果找到多于一个根,则不能生成最小生成树

4.代码实现:

int n,m,fa[maxn],cnt;
struct edge{
    int u,v,w;
};
bool cmp(edge e1,edg2 e2)
{
    return e1.w<e2.w;
}
void init(int m)
{
    cnt = 0;
    for(int i = 0; i<=m; i++)
        fa[i] = i;
}
int findfa(int i)
{
    while(i != fa[i])
        i = fa[i];
    return i;
}
int merge(int i, int j)
{
    i = findfa(i);
    j = findfa(j);
    if(i != j)
    {
        fa[i] = j;
        return 1;
    }
    return 0;
}
int main()
{
    while(scanf("%d %d",&n,&m) != EOF)
    {
        edge mp[maxn];
        init(m);
        for(int i = 0; i<n; i++)
        {
            int u,v,w;
            scanf("%d %d %d",&u,&v,&w);
            mp[i].u = u;
            mp[i].v = v;
            mp[i].w = w;
        }
        sort(mp,mp+n,cmp);
        int res = 0;
        for(int i = 0; i<n; i++)
        {
            if(merge(mp[i].u,mp[i].v))
                res += mp[i].w;
        }
        for(int i = 0; i<=m; i++)
        {
            if(fa[i] == i) cnt++;
        }
        if(cnt == 1) printf("%d\n",res);
        else printf("No\n");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值