detectron ResizeShortestEdge 的实现探究

最近在做项目的时候,发现训练完了之后,输入不同尺寸的图,精准度会不同。于是仔细的看了下对于不同尺寸的增广训练。

训练阶段用到的参数 :

# 后面跟的值是举例值,使用者可根据自己的图片大小进行调整
  
  MAX_SIZE_TRAIN: 1333             # 图片的长边 ,必须小于 1333。 第一优先级限制
  
  MIN_SIZE_TRAIN: (640 ,    800)   #图片的长边,会缩放到这个尺寸,在满足 MAX_SIZE_TRAIN   的前提下,才会满足这个条件

举例:

原始图片尺寸最短边 根据 640 缩放尺寸最短边 根据 800 缩放尺寸结论
2600 * 12581322 * 640 (正常缩放)1653 * 800 (不符合 MAX_SIZE_TRAIN<= 1333 ) 实际为: 1333*644部分数据增广无效
3600 * 12581831 * 640 (不符合 MAX_SIZE_TRAIN<= 1333 ) 实际为: 1333*6442289 * 800 (不符合 MAX_SIZE_TRAIN<= 1333 ) 实际为: 1333*644全部增广无效

测试阶段用到的参数 :


# 后面跟的值是举例值,使用者可根据自己的图片大小进行调整

  MAX_SIZE_TEST: 1333            # 图片的长边,超过会缩放到这个尺寸
  
  MIN_SIZE_TEST : 800              # 图片的短边,做小是这个值 , 在满足 MAX_SIZE_TRAIN   的前提下,才会满足这个条件
  

举例:

原始图片尺寸缩放后进入预测的图片结论
2600 * 12581333*644按照 MAX_SIZE_TEST 的原则进行缩放
400 * 400800 * 800图片被放大
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值