最近在做项目的时候,发现训练完了之后,输入不同尺寸的图,精准度会不同。于是仔细的看了下对于不同尺寸的增广训练。
训练阶段用到的参数 :
# 后面跟的值是举例值,使用者可根据自己的图片大小进行调整
MAX_SIZE_TRAIN: 1333 # 图片的长边 ,必须小于 1333。 第一优先级限制
MIN_SIZE_TRAIN: (640 , 800) #图片的长边,会缩放到这个尺寸,在满足 MAX_SIZE_TRAIN 的前提下,才会满足这个条件
举例:
原始图片尺寸 | 最短边 根据 640 缩放尺寸 | 最短边 根据 800 缩放尺寸 | 结论 |
---|---|---|---|
2600 * 1258 | 1322 * 640 (正常缩放) | 1653 * 800 (不符合 MAX_SIZE_TRAIN<= 1333 ) 实际为: 1333*644 | 部分数据增广无效 |
3600 * 1258 | 1831 * 640 (不符合 MAX_SIZE_TRAIN<= 1333 ) 实际为: 1333*644 | 2289 * 800 (不符合 MAX_SIZE_TRAIN<= 1333 ) 实际为: 1333*644 | 全部增广无效 |
测试阶段用到的参数 :
# 后面跟的值是举例值,使用者可根据自己的图片大小进行调整
MAX_SIZE_TEST: 1333 # 图片的长边,超过会缩放到这个尺寸
MIN_SIZE_TEST : 800 # 图片的短边,做小是这个值 , 在满足 MAX_SIZE_TRAIN 的前提下,才会满足这个条件
举例:
原始图片尺寸 | 缩放后进入预测的图片 | 结论 |
---|---|---|
2600 * 1258 | 1333*644 | 按照 MAX_SIZE_TEST 的原则进行缩放 |
400 * 400 | 800 * 800 | 图片被放大 |