假新闻检测论文分享(17)CAFE(Cross-modal Ambiguity Learning for Multimodal Fake NewsDetection)

本文提出了一种名为CAFE的跨模态歧义学习方法,用于多模态假新闻检测。CAFE通过自适应聚合单模态特征和跨模态关联,利用KL散度量化文本和图像之间的歧义性,提高检测精度。实验结果显示,CAFE在Twitter和Weibo数据集上相比于现有方法有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1介绍

本文首先从信息论的角度对跨模态歧义性学习问题进行形式化描述,利用不同单模态特征之间的分布散度量化其歧义性;然后,提出了一种模糊度感知的多模态假新闻检测方法CAFE。CAFE通过自适应地聚合单模态特征和跨模态关联,即在跨模态歧义性较弱时依赖单模态特征,在跨模态歧义性较强时参考跨模态关联,从而提高假新闻检测精度。

主要创新点:

  1. 提出了跨模态歧义学习问题,这是多模态假新闻检测的一个关键挑战,并提出了一种基于KL散度的方法,通过估计其特征分布的散度来量化文本和图像之间的歧义。
  2. 提出了CAFE——一种模糊感知的多模态假新闻检测方法,通过学习的模糊分数,自适应地聚合单模态特征和跨模态相关性。
  3. 在两个广泛使用的数据集——Twitter和Weibo上进行实验。实验结果表明,与当前主流的假新闻检测方法相比,CAFE在两个数据集上的准确率分别提高了2.2 ~ 18.9%和1.7 ~ 11.4%。

2 相关工作

单模态检测方法

(一)依赖于文本内容分析[5,7 - 10,24,25,32],

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_41964296

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值