Ollama接入GLM或Baichuan2等本地LLM模型

本文详细描述了如何在Linux环境下通过二进制文件安装Ollama,包括添加用户、创建配置文件、处理模型加载问题以及管理文件映射的过程,以解决网络卡顿问题。
摘要由CSDN通过智能技术生成

安装配置Ollama
下载Ollama二进制文件,直接使用.sh安装网络太卡了,即便是开了代理也卡,故在此使用二进制安装。

sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama

创建一个用户名为ollama:

sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama

创建一个自定义配置文件:

vi Modelfile

使用vi往里面输入,在此我用的是Baichuan2 13B Chat,为了保险起见采用绝对路径。

FROM /hy-tmp/Models/Baichuan2-13B-gguf/baichuan2-13b-chat.gguf

启动Ollama(本终端会一直被占用)

ollama start

新建一个连接终端,跑模型。

ollama create example -f Modelfile
ollama run example

在这里插入图片描述
由于我系统盘只有20G加载模型时候报错了,因此我做了一个映射(空间够忽略这条)

#在该路径下有个blobs目录
cd /root/.ollama/models
# 移动 blobs 目录
sudo mv /root/.ollama/models/blobs /hy-tmp/
# 在原来的位置创建一个符号链接我转存到了/hy-tmp/blobs
sudo ln -s /hy-tmp/blobs /root/.ollama/models/blobs

成功的效果图:
在这里插入图片描述

将大模型glm3部署到笔记本本地CPU可能会面临一些挑战。首先,大模型意味着它的大小和复杂度较大,在本地的笔记本CPU上可能无法完全支持。因此,在部署之前,我们需要确保笔记本的处理能力和内存足以支持该模型的运行。 在部署大模型glm3之前,我们还需要提前进行一些准备工作。首先,我们需要安装和配置适当的软件环境,例如R或Python的科学计算库。其次,我们需要下载并导入所需的数据集和训练好的模型参数。 在将大模型glm3部署到笔记本本地CPU上时,我们需要注意以下几点: 1. 内存管理:由于大模型的复杂性和大小,可能会占用较大的内存空间。因此,我们需要注意内存的管理,确保足够的内存可用,并及时释放不需要的内存。 2. CPU资源分配:大模型的训练和推断过程可能会占用大量的CPU资源。在部署之前,我们可以通过限制其他应用程序的资源使用来提供更多的CPU资源给模型运行。 3. 模型优化:为了在本地CPU上更高效地运行大模型glm3,我们可以考虑一些模型优化策略,例如模型压缩、并行计算等。这些策略可以帮助减少模型的大小和计算复杂度,提高模型的性能。 4. 计算效率:大模型的训练和推断过程需要大量的计算资源。在部署之前,我们可以尝试使用更高效的算法或技术来减少计算的时间和资源消耗。 总结而言,将大模型glm3部署到笔记本本地CPU需要我们考虑资源管理、模型优化和计算效率等方面。在合理利用资源和采用适当的优化策略下,我们可以在本地CPU上成功部署和运行大模型glm3。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIOT魔法师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值