nn的博客

记录点滴过程
私信 关注
zjnlswd
码龄3年
  • 10,912
    被访问量
  • 80
    原创文章
  • 150,878
    作者排名
  • 2
    粉丝数量
  • 于 2018-04-09 加入CSDN
获得成就
  • 获得1次点赞
  • 内容获得2次评论
  • 获得1次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #图像处理#深度学习#Python#PyTorch#TensorFlow#算法
TA的专栏
  • 积极心理学
    1篇
  • 编程工具
    2篇
  • tensorRT
    1篇
  • pytorch
    3篇
  • caffe
    9篇
  • keras
    1篇
  • 变好看
    1篇
  • 医学
    3篇
  • 算法学习
    10篇
  • C++
    16篇
  • Python
    19篇
  • DeepLearning
    14篇
  • tensorflow
    4篇
  • shilian
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

哈佛公开课--网易公开课笔记--积极心理学

1、成功的人的特质looking up opening up终身学习者2、学完这门课问自己有什么变化研究消极与积极的文章比例为21:1如果一个人21天都i不开心只有一天开心,这不是一件好事情如果一个人一天21个小时都不开心,只有一个小时开心,这不好抑郁症再增加because we measure betteror there's more awarenessthat's not all ,objectly there's more depression...
原创
23阅读
0评论
0点赞
发布博客于 1 月前

关键点算法综述学习

原文pdf网址:Monocular Human Pose Estimation: A Survey of Deep Learning-based Methods (arxiv.org)知乎已有博主的翻译:2020 Pose Estimation人体骨骼关键点检测综述笔记(有空更新) - 知乎 (zhihu.com)
原创
27阅读
0评论
0点赞
发布博客于 2 月前

好用的pdf转word网址

PDF转换成Word在线转换器 - 免费 - CleverPDF
原创
12阅读
0评论
0点赞
发布博客于 2 月前

tensorRT+windows

1、找到对应的cuda版本的tensorRT,下载后解压2、在python环境中conda建立虚拟环境、安装tensorflow-gpu3、pip安装tensorRT文件夹中graphsurgeon和uff4、下载mnist数据5、打开\TensorRT-6.0.1.5\data\mnist运行python generate_pgms.py生成pgm图像数据6、打开data\samples\sampleMNIST里的sln工程,配置对应的sdk环境和vs环境(我的电脑是8.1和v140)
原创
116阅读
0评论
0点赞
发布博客于 4 月前

pytorch使用module训练线性不可分数据

参考代码https://github.com/L1aoXingyu/code-of-learn-deep-learning-with-pytorch
原创
18阅读
0评论
0点赞
发布博客于 5 月前

pytorch学习简单的nn和mnist分类

https://github.com/L1aoXingyu/code-of-learn-deep-learning-with-pytorch参考以上网址的代码import numpy as npimport torchfrom torchvision.datasets import mnistimport matplotlib.pyplot as pltfrom torch import nnfrom torch.autograd import Variabletrain_set
原创
118阅读
0评论
0点赞
发布博客于 5 月前

pytorch学习1基础

pytorch数据准备和使用模型的定义熟练掌握训练过程和结果可视化训练方法(sgd\adam)和测试方法1、读取数据的指令torch.utils.dataclass torch.utils.data.Dataset表示dataset的抽象类所有其他数据集都应该进行子类化,所有子类应该是override __len__和__getitem__,前者提供数据集大小,后者支持整数索引,范围从0到len(self)2、搭建网络模块指令torch.nn在pytorch.
原创
34阅读
0评论
0点赞
发布博客于 5 月前

caffe添加新的层

caffe添加新的层第一步:创建新定义的头文件include/caffe/layers/my_neuron_layer.hpp可以参考其他层的框架头文件等,继承神经层这个类重新Layer名的方法:virtual inline const char* type() const{return "MyNeuron";}如果只是需要cpu方法的话,可以注释掉forward_gpu()和backward_gpu()这两个方法第二步:创建对应src/caffe/src/my_neuron_la
原创
48阅读
0评论
0点赞
发布博客于 6 月前

caffe 绘制loss图

caffe自带的绘制loss的工具 /mycaffe/tools/extra/plot_training_log.py.example去掉后缀可使用使用说明:Usage: ./plot_training_log.py chart_type[0-7] /where/to/save.png /path/to/first.log ...Notes: 1. Supporting multiple logs. 2. Log file name must end with the l...
原创
67阅读
0评论
0点赞
发布博客于 6 月前

caffe 数据卷积后可视化

# coding : utf-8# caffemodel 输入图像之后可视化import numpy as npimport matplotlib.pyplot as pltimport osimport sysimport caffedeploy_file = "/home/**/mycaffe/python/.prototxt"model_file = "home/**/mycaffe/python/.caffemodel"test_data = "./img.jpg"#编写一.
原创
66阅读
0评论
0点赞
发布博客于 6 月前

caffe 权值可视化

# coding : utf-8# caffemodel 权值可视化import numpy as npimport matplotlib.pyplot as pltimport osimport sysimport caffedeploy_file = "/home/**/mycaffe/python/deploy.prototxt" #配置网络结构文件model_file = "/home/**/mycaffe/python/*.caffemodel"#配置权重文件路径#编写一.
原创
67阅读
0评论
0点赞
发布博客于 6 月前

pycaffe环境的配置与draw_net.py调用

安装pycaffe需要安装相关的依赖项sudo apt-get updatesudo apt-get install python-pip python-dev python-numpysudo apt-get install gfortran graphvizsudo pip install -r ${caffe_root}/python/requirements.txtsudo pip install pydot
原创
117阅读
1评论
0点赞
发布博客于 6 月前

caffe使用训练好的model-训练mnist例子

1、mean file将所有数据的均值保存为文件,如果需要用到均值文件,图片会先减去均值再进行训练和测试,会提高速度和精度。对于imageNet库则需要均值文件。在网络文件中,数据层配置均值文件2、deploy文件1)输入和data相关的层去掉2)输出和loss相关的层去掉3)加入input:“data”input_shape{ dim:1 #batchsize 每次forward输入的图片数 dim:3 #channels dim:28#wid...
原创
33阅读
0评论
0点赞
发布博客于 6 月前

caffe数据转换

1、测试caffe下载mnist数据和标签sh ./data/mnist/get_mnist.sh生成mnist数据的lmdbsh ./examples/mnist/create_mnist.sh训练mnist的分类模型sh ./examples/mnist/train_lenet.sh训练没问题,最后可得到10000次训练后,训练准确率为99%左右2、将自己的数据生成lmdb建立自己的数据文件分类夹mydata文件夹中分成:train--类别1、类别2tes
原创
50阅读
0评论
0点赞
发布博客于 6 月前

caffe编译

编译遇到问题的解决方法:Linux提示 /usr/bin/ld:cannot find-lxxx 系列解决方法:要不就apt-get安装一下,要不就link一下sudo ln -s libhdf5-1b5dc0dd.so.101.1.0 libhdf5.sohttps://blog.csdn.net/YiLiang_/article/details/68928387?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFro
原创
67阅读
0评论
0点赞
发布博客于 6 月前

DL study 12

注意本文章内容都来自网易云课堂 深度学习微专业课程正交化 orthogonalization1、在训练训练集的时候如果训练集收敛的不好,考虑使用更大的网络,或者改变优化算法(sgd\RMSprop\adam)2、在dev set上拟合的不好正则化,或者使用更大的训练集3、在test set 上拟合不好使用更大的dev set数据4、在现实世界中表现较好如果在现实使用中表现的不好,那么可能是test...
原创
60阅读
0评论
0点赞
发布博客于 6 月前

caffe学习一 目录结构

data/用于存放下载的训练数据docs/帮助文档examples/代码样例matlab/Matlab接口文件python/Python接口文件models/一些配置好的模型参数scripts/一些文档和数据会用到的脚本核心代码tools/保存的源码时用于生成二进制处理程序,caffe在训练时,实际是直接调用这些二进制文件include/caffe的实现代码的头文件src/实现caffe的源文件src/文件结构gtest/ google test的用于测.
原创
34阅读
0评论
0点赞
发布博客于 6 月前

老齐python零基础轻松入门笔记--类的静态方法

class Date(object): def __init__(self,year=0,month=0,day=0): self.year = year self.month =month self.day=day @classmethod def from_string(cls,date_as_string): year,month,day =map(int,date_as_string.split('-')) .
原创
28阅读
0评论
0点赞
发布博客于 7 月前

老齐零基础python入门-python编程学习笔记---关于类的练习程序

class Student: def __init__(self,name,grade,subject): self.name=name self.grade=grade self.subject=subject def do_work(self,time): if self.grade>3 and time>2: return True elif self.grade<.
原创
41阅读
0评论
0点赞
发布博客于 7 月前

csdn学院程序员的数学学习笔记--共轭梯度方法python

#共轭梯度法import numpy as npdef conj_grad(A,b,n): #n = b.shape[0] xs=[] rs=[] ps=[] alphas=[] x0=np.random.rand(b.shape[0]) xs.append(x0) r0=b-A.dot(x0) rs.append(r0) p0=r0 ps.append(p0) .
原创
32阅读
0评论
0点赞
发布博客于 6 月前

csdn学院程序员的数学学习笔记编写梯度下降法程序python,求解线性参数

import numpy as npimport matplotlib.pyplot as pltX = np.array([np.ones(100),np.random.rand(100)])y= np.dot([4,3],X)+np.random.rand(100)plt.scatter(X[1,:],y)alpha = 0.1num_iters=1000def gradient_descent(theta, X ,y ,alpha, num_iters): loss_hi.
原创
44阅读
0评论
0点赞
发布博客于 6 月前

图像去噪算法分析

1、n2n noise2noise我暂时理解的意思是这个模型训练的时候还是需要干净的图像的使用干净的图像加噪声作为输入图像,输出图像也是加了噪声的图像然后相当于训练编码器和解码器程序可以参考的链接:https://blog.csdn.net/weixin_36474809/article/details/86600925?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2
原创
353阅读
0评论
0点赞
发布博客于 9 月前

matlab字体变小

最近在使用matlab时,每次在编辑框状态下点一下鼠标右键,整个编辑框都会立即变小,同时字体会变小很多,包括主窗口也会变小,看上去非常不习惯,只有重启matlab才能解决这个问题,非常麻烦。后面在google上搜索才找到了解决办法,现记录在这里。运行环境:Win10 64位 家庭版MATLAB版本:MATLAB R2014a 64位解决办法:1. 进入安装matlab的根目录,如我是安装在 C:\Program Files\MATLAB\R2014a 目录下;2. 该目录下有个bin文件夹,在bin文件..
转载
68阅读
0评论
0点赞
发布博客于 6 月前

穿衣风格搭配

衣服的风格:大小动静直曲如果你穿小号的衣服显得穿小孩的衣服那么就不合适。如果你穿大号的衣服显得不合身小亮感适合小而精致的装饰大亮感适合大装饰小亮感偏静的人适合样式较为传统样式的衣服,偏动的人适合较为夸张款式皮肤颜色偏淡的人适合较亮较淡的衣服美学的最高境界是包容与接纳...
原创
98阅读
0评论
0点赞
发布博客于 9 月前

【转】多尺度模板匹配

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接:https://blog.csdn.net/sazass/article/details/89634427...
转载
370阅读
0评论
0点赞
发布博客于 9 月前

学点编程吧60天python入门学习笔记14--python模块和包

#作业#杨辉三角形def triangles(): n=[1] while True: yield n n=[x+y for x,y in zip([0]+n,n+[0])]n=0for t in triangles(): print(t) n=n+1 if n==10: break[1][1,...
原创
51阅读
0评论
0点赞
发布博客于 10 月前

学点编程吧60天python入门-函数4(迭代器生成器)

上期作业#使用递归的方式,实现二分查找def binary_search(lists,data): n=len(lists) if n<1: return "找不到" mid=n//2#中间索引 if lists[mid]>data: #要是中间索引的值大于我们想要的值,我们就到中间索引的左边的列表去找...
原创
41阅读
0评论
0点赞
发布博客于 10 月前

学点编程吧60天入门12--函数(3)--递归

#递归函数#函数调用函数自身,有结束条件#阶乘函数def factorial(n): if n==0: return 1 return n*factorial(n-1)num = eval(input("请输入像计算的阶乘:"))print(factorial(num))请输入像计算的阶乘:36def move(n,a,b,c): i...
原创
24阅读
0评论
0点赞
发布博客于 10 月前

学点编程吧60天python入门11--函数(2)内置函数学习笔记

#两个火车相距10km,A火车每小时1km的速度前行,#B火车每小时2km的速度前行,求b几小时后追上adef train(train1,train2): while True: train1.append("A") train2.extend(["B","B"]) print(train1) print(train2,e...
原创
40阅读
0评论
0点赞
发布博客于 10 月前

学点编程吧60天python入门-10函数(1)

#函数def eat(dessert,fruit='apple'):#fruit是默认参数为apple,为可选参数 print("I like",dessert) print("I like",fruit) eat('chocolate')eat('ice cream','banana')I like chocolateI like appleI like ...
原创
55阅读
0评论
0点赞
发布博客于 10 月前

学点编程吧60天python入门--8数据结构

#列表 元组#列表shelf=['a',1,"b"]#列表的增加lists=['1','2']lists.append('3')lists['1', '2', '3']lists.extend(shelf)#合并两个列表lists['1', '2', '3', 'a', 1, 'b']lists=[1,2,3,5,4]lists.sort()#排序lists...
原创
39阅读
0评论
0点赞
发布博客于 10 月前

学点编程吧60天python入门7控制语句if else for

#控制语句# if# elif# elsetrafficLight=input("当前交通信号")if trafficLight=='y': print("黄灯请等待")elif trafficLight=='r': print("红灯停")else: print("other")当前交通信号r (绿色字体代表输出)红灯停i=0sum=0fo...
原创
47阅读
0评论
0点赞
发布博客于 11 月前

学点编程吧60天python入门笔记6--输入输出

name="xd"print("my name is ",name)my name is xd(输出)print("ad" "dddd")adddddprint("O","M",sep="-")#sep表示连接符号O-Mprint("1",end="")#默认end=
print("2")12print("hell0!",file=open("out....
原创
28阅读
0评论
0点赞
发布博客于 11 月前

学点编程吧60天python入门5各种运算符

原创
35阅读
0评论
0点赞
发布博客于 11 月前

学点编程吧60天python入门4

基础语法字符串:单引号,双引号,三引号都可以如果字符串里有引号,则使用转义字符\'r''字符串前面有个r可以实现自动转译word=r" this is \ an apple"输出word "this is \\an apple"关于命名驼峰命名法myApple变量MyApple开头字母也大写的用于类.1、变量名称尽可能的知道其含义,如:pages代表...
原创
34阅读
0评论
0点赞
发布博客于 11 月前

学点编程吧60天python入门3

linux下安装python 可以用apt 命令sudo apt install python源码编译安装最新版本的python:下载最新源码-》安装关联包-》配置表-》make-》安装二进制文件定义优先级,2》1sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 1sudo...
原创
25阅读
0评论
0点赞
发布博客于 11 月前

学点编程吧python入门笔记2

来源:https://www.xdbcb8.com/forum/topic/230python的安装注意安装的时候将python添加到环境变量。不然可能cmd可能找到pythonanaconda里的learning里有一些学习资料ipython可以用,输入首字母可以提示一些函数,还有其他颜色提示等pip install ipython -i https://pypi.do...
原创
57阅读
0评论
0点赞
发布博客于 11 月前

学点编程吧python入门笔记1

学点编程吧:https://www.xdbcb8.com/python3test03【请勿买卖】什么是python?python 英语是蛇的意思。发明python语言的人是吉多.范罗苏姆Guido van Rossum他的个人主页是如下图的二维码pep是python增强提案的缩写下面几个提案可以去看一下pep8:定义了编写python代码的规范和应该遵守的编码原...
原创
43阅读
0评论
0点赞
发布博客于 1 年前

新冠的丁香公开课学习笔记3

病例讲解乳酸升高(表面代谢问题)CD3,CD4,CD8降低, 表示全淋巴细胞降低。这个病毒可能对淋巴细胞有攻击性(推测)病例2吸氧也不一定是氧浓度越高越好也可能合并细菌感染王素娜 唐都医院可能接触患者喷出的飞沫,然后再接触自己的口鼻,则可能感染。勤洗手是很有必要的可能母婴传播影像学可能进展明显,但是没有明显症状轻型:临床症状轻微,影像学未见肺炎表现普通型具有...
原创
488阅读
0评论
0点赞
发布博客于 1 年前

新冠的丁香公开课笔记2

复旦大学中山医院转院的安全重型肺炎:呼吸频率,氧饱和度,ct密切观察营养支持:营养(蛋白质,如果补充不及时会产生抵抗力低,水肿等情况)早期营养能降低病死率病原学治疗可用干扰素雾化吸入可能继发曲霉菌感染等,所以后期可能要用广谱抗生素呼吸支持治疗氧疗无创机械通气有创机械通气ECMO并发症 出血啊感染等是否有经验循环支持改善微循环去甲肾上腺素SARS-糖皮质激...
原创
74阅读
0评论
0点赞
发布博客于 1 年前

新冠的丁香公开课学习笔记

病毒性肺炎:双肺多发,单发较少磨玻璃影GGO肺外周或胸膜下70多岁的病人氧分压要是80以上,低于这个值要注意50多岁氧分压应该要85以上磨玻璃影内有黑色的小点,是扩张的细支气管进展期:病灶变多,有实变重型患者,48小时病灶范围可增加超过50%,此时严重影响肺部换气,又称”白肺“fev1占预测值的百分比低 一秒量fvc肺容积低 所以呼吸急促两个的比值用药之后如果支气管变胖...
原创
296阅读
0评论
0点赞
发布博客于 1 年前

失恋是一门选修课1

失恋是一门选修课失恋时间2018.12.1现在已经过去三个多月了,本来以为自己会有什么特别大的变化,总体来看,确实了解了很多其他的东西。但是我还是我,心态没崩。希望下面的日子会有更多的收获和进步。那么这个系列的文章我就来记录一下自己的成长吧首先还是要感谢这段时间陪伴我的朋友和家人,记录生活和点点滴滴以后集中在微博小号(一些照片运动或者美食)可以在(朋友圈一个星期只发一条,并且不能是...
原创
166阅读
0评论
1点赞
发布博客于 6 月前

DL study 14 为什么是人的表现

因为第一,机器学习算法一般在超越了人的表现之后就难以再上升了。比如一张模糊的照片,判断是否猫,人和机器都何难判断。z这个不可能再上升的情况叫做Bayes error.是理论上最好的结果了。一般机器学习算法接近人的表现的时候,就已经近这个最优的解了。第二,当机器学习算法超过或者接近人的表现的时候,就很难在根据某些人工的工具去提升这个算法了。比如和人工标注的结果进行比较,使得找出问题,然后使算...
原创
63阅读
0评论
0点赞
发布博客于 3 年前

DL study 13 devset /test set

 dev set(development set)和test set最好来自统一分布。dev set 和test set 不能太长,这样影响测试效率。并且当测试集不对的时候尽快改。还有一种策略是统计cost的时候,增加某些类别的权值。比如将不是猫也不是小黄图的图像分类成小黄图,这样是非常错误的。评估指标要尽早的建立方便模型的选择...
原创
140阅读
0评论
0点赞
发布博客于 3 年前

重要的人工智能会议

ICLR International Conference on Learning Representations
原创
294阅读
0评论
0点赞
发布博客于 3 年前

DL study11 学习

关于参数的调优:现在较大的范围内试试参数,然后在再一个比较好的参数范围内选择。10-z次方选择参数。z=-5~5;batch normalization 是对每次的minibatch 做某一个层的减均值除方差,然后乘以阿尔法加β,然后再通过激活函数。阿尔法和β也是要训练的参数。batch normalization有正则化的作用,但是不能当作是正则化。类似dropout,每个minibatch可以...
原创
76阅读
0评论
0点赞
发布博客于 3 年前

DL study 10

可以想象成v是速度,dw是加速度。momentum动量。一般β设置成0.9是比较合适的一般可能写成v=βv+dv,那么相当于两边都成1/(1-β)。也就是学习率α是上面公式中的1/(1-β)倍就可以了...
原创
55阅读
0评论
0点赞
发布博客于 3 年前

BN与LRN,RGAN

LRN:https://blog.csdn.net/hjimce/article/details/50866313局部相应归一化BN:http://www.cnblogs.com/houkai/p/6553186.htmlbatch normalize:https://arxiv.org/abs/1502.03167--------------------------------RGAN:ga...
原创
672阅读
0评论
0点赞
发布博客于 3 年前

DL study9 训练的技巧

注意输入的特征需要归一化。因为如果特征的范围不一样,那么网络需要优化的函数会是一个狭长的圆,这样不利于快速的收敛。使用L2范数的时候,需要多次测试lambda的值哪个好early stopping根据训练error和dev data 的error曲线找到合适和stopping 位置。但是这种方式实际上是综合了需要cost function还要兼顾不要过拟合(需要设置正则化项等)...
原创
60阅读
0评论
0点赞
发布博客于 3 年前

DL study 8 正则化

L1范数和L2范数
原创
65阅读
0评论
0点赞
发布博客于 3 年前

DL study 7 过拟合和欠拟合 high bias and high variance


原创
177阅读
0评论
0点赞
发布博客于 3 年前

tensorflow study4 cnn

In [1]:#构建简单的卷积神经网络from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfmnist=input_data.read_data_sets('MNIST_data/',one_hot=True)sess=tf.InteractiveSession()Extracti...
原创
89阅读
0评论
0点赞
发布博客于 3 年前

tensorflow study3 MLP

#MLPfrom tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfmnist=input_data.read_data_sets("MNIST_data/",one_hot=True)sess=tf.InteractiveSession()#使用tf默认的interactiveSessi...
原创
59阅读
0评论
0点赞
发布博客于 3 年前

tensorflow study2 自动编码器的实现

import numpy as npimport sklearn.preprocessing as prepimport tensorflow as tfIn [3]:from tensorflow.examples.tutorials.mnist import input_dataIn [20]:def xavier_init(fan_in,fan_out,constant=1):...
原创
90阅读
0评论
0点赞
发布博客于 3 年前

tensorflow学习1 softmax实现

from tensorflow.examples.tutorials.mnist import input_datamnist=input_data.read_data_sets("MNIST_DATA/",one_hot=True)Extracting MNIST_DATA/train-images-idx3-ubyte.gzExtracting MNIST_DATA/train-labe...
原创
130阅读
0评论
0点赞
发布博客于 3 年前

DL study 6

超参数就是神经网络中,虽然不是实际的参数W,b,但是会影响最终训练效果的参数。比如,学习率、batchsize等
原创
45阅读
0评论
0点赞
发布博客于 3 年前

DL study5 numpy的小技巧补充,logistic regression cost function的解释

#numpy中的向量说明,防止一些奇怪的bug出现import numpy as npa=np.random.randn(5)In [2]: aOut[2]:array([ 1.46701856, 0.63680735, 0.23052999, -0.34198406, -0.16955206])In [3]: a.TOut[3]:array([ 1.467018...
原创
113阅读
0评论
0点赞
发布博客于 3 年前

DL study4 numpy的broadcasting方法

#在python中可以使用numpy,简单的实现向量的运算#z=np.dot(w.t,x)+b#numpy examplesimport numpy as npA=np.array([[56.0,0.0,4.4,68.0], [1.2,104.0,52.0,8.0], [1.8,135.0,99.0,0.9]])print(A)[[ 56. ...
原创
74阅读
0评论
0点赞
发布博客于 3 年前

DL learning3 logistic向量方法实现

logistic regression向量方法实现
原创
53阅读
0评论
0点赞
发布博客于 3 年前

DL study2 神经网络基础知识

1、logistic Regression可以看到当y=1的时候,要想loss function小那么y^=1当y=0时,要想loss function小那么y^=02、logistic regression求导
原创
89阅读
0评论
0点赞
发布博客于 3 年前

DeepLearning学习1 基础知识

深度学习为什么越来越火?因为现在的数据越来越多(图像数据、传感器数据等等)。传统的分类器处理大规模的数据并不一定带来好的效果。但是使用深度学习。越多的数据越有利于网络的训练效果。结构化数据与非结构化数据结构化数据是例如各种表格和数字非结构化数据是图像、文字等。但是现在网络越来越能够处理这些非结构化数据了向大神提问邮件地址...
原创
64阅读
0评论
0点赞
发布博客于 3 年前

python learning4 高阶应用等

#高阶函数map/reduceIn [2]:#我们先看map。map()函数接收两个参数,一个是函数,#一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。def f(x): return x*xr=map(f,[1,2,3,4,5])rOut[2]:&lt;map at 0x1e74d3cf860&gt;In [3]:...
原创
75阅读
0评论
0点赞
发布博客于 3 年前

python learning3

In [ ]:#切片In [1]:a=list(range(100))In [2]:a[1:19]Out[2]:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]In [3]:a[:9]Out[3]:[0, 1, 2, 3, 4, 5, 6, 7, 8]In [5]:a[-10:-1]Out[5]:[90, ...
原创
41阅读
0评论
0点赞
发布博客于 3 年前

python learning2

In [1]:#python函数#内置函数#int()#float()等强制转换函数#abs()求绝对值1&gt;3#可以直接比较大小Out[1]:FalseIn [2]:a=abs#相当于把函数名赋给了一个变量a(-5)Out[2]:5In [3]:#定义一个函数#定义空函数def nop(): pass#pass什么都不做def my_abs(x)...
原创
63阅读
0评论
0点赞
发布博客于 3 年前

python学习learning1

In[2]:#ASCII和字母之间的转化ord('A')Out[2]:65In[3]:chr(65)Out[3]:'A'In[48]:a=['ln','刘念','aaaa']aOut[48]:['ln', '刘念', 'aaaa']In[28]:len(a)Out[28]:3In[29]:name='addd'name.encode('utf-8')Out[29]:b...
原创
69阅读
1评论
0点赞
发布博客于 3 年前

YOLO数据转化

YOLO数据转化1、将labelimg转化为xml2、将xml转化为txt1、code(python)来源见网址:https://blog.csdn.net/kapok_lalala/article/details/78990996#! /usr/bin/pythonimport os, sysimport globfrom PIL import Image#ICDAR image pathsrc...
转载
770阅读
0评论
0点赞
发布博客于 3 年前

YOLO学习

yolo1将图像分成7*7个小块,每个小块有两个boundingbox(每个bounding有5个值,x,y,w,h,和置信度),一共有20个类别7*7*(2*5+20)输出写的很详细的介绍yolo V1,V2, V3https://zhuanlan.zhihu.com/p/47575929yolo2参考这个文章https:/...
原创
115阅读
0评论
0点赞
发布博客于 3 年前

resnet论文学习

作者:SnailTyan链接:https://www.jianshu.com/p/f3b8141ac43b來源:简书著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。Deep Residual Learning for Image RecognitionAbstractDeeper neural networks are more difficult to train. We p...
转载
111阅读
0评论
0点赞
发布博客于 3 年前

keras图像处理笔记1

keras数据生成器将图像处理转化为训练格式,keras使训练数据不会爆炸内存或者显存keras可以选择迁移学习中哪些层是可以训练的
原创
692阅读
0评论
0点赞
发布博客于 3 年前

C++学习16 try catch2和STLmap等

异常语句try()catch(){ }如果mathErr有三个子类在try里面会抛出UnderFLowErr,是mathErr的子类,相当于匹配到。如果第三个catch括号里面不是…而是UnderFlowErr,那么编译不通过,因为第二个已经被捕捉了。它是按照顺序去匹配的,不是说跟那个像。 Void abc(int a):throw(MathErr){…}表示只会抛出MathErr的异常如果抛出的...
原创
304阅读
0评论
0点赞
发布博客于 3 年前

C++学习15异常处理try catch

异常基本概念可能这个文件别人打开了你开不了,可能这个文件不存在这个文件的大小可能在变,这个文件在被写可能这个文件大小很大,得不到那么大内存可能这个文件在某个位置有问题了,读不出来了(硬盘或者存储位置某个地方坏了)其实每一件事情都可能存在问题。程序能不能处理程序中出现的危机是健壮的程序这个程序可以实现找到错误但是并不好好的方法是使用exception例外,异常机制(在某个点出现了问题,米不知道怎...
原创
232阅读
0评论
0点赞
发布博客于 3 年前

C++学习14模板

注意:本学习笔记来自网易云课堂学习模板函数模板—用来做出函数类模板—用来做出类 函数模板交换两个变量模板的作用只是声明有这样一个函数 当使用的时候,如下,在float类型的交换的时候,编译器会根据模板做出一个函数针对float类型。 可以制定类型的-----------------------------------------类模板用法:类中的函数每一个都是函数模板 --------------...
原创
145阅读
0评论
0点赞
发布博客于 3 年前

c++学习13运算符重载

注意:本笔记来源于网易云课堂笔记运算符重载 不能重载的符号 只有已经存在的运算符可以重载 只能对新的类去重载运算,必须保持运算数的数量和运算符优先级 格式:operator *()如果是成员函数参数表里有一个参数就行,(对于+)。另一个参数是用that指向。如果是全局函数,那么+的重载,参数表里有两个参数 eg:因为返回的是个值而不是一个变量,不能是a+b=6(在C++中不能这样出现),所以返回类...
原创
64阅读
0评论
0点赞
发布博客于 3 年前

C++学习12静态成员变量和静态函数

注意:本学习笔记来自网易云课堂学习StaticStatic的一个函数里的量,就相当于是全局变量,只不过只有在这个函数里才能使用这个量Static 的是函数里的一个类的话,这个类在第一次进这个函数的时候被初始化。这个对象的存储是全局化的。这个变量只有在程序结束的时候才发生析构(全局变量的初始化如果在不同CPP里是不知道谁先编译的,所以如果一个变量的值依赖另一个值,那么就会有问题,解决办法是所有全局变...
原创
54阅读
0评论
0点赞
发布博客于 3 年前

C++学习11多态的解释,引用的补充

多态性的实现Class A{Public:    A():i(0){}    virtual void f(){}}所有有virtual的类都有一个隐含的指针vptr指针(指针的值是一样的,也就是存放vtable的地址是一样的),指向vtable,这样的话不同的类的vptr指向自己的vtable,那么就可以找到对应的virtual函数了 如果你的类里有一个函数是virtual的那么你的析构函数也要...
原创
180阅读
0评论
0点赞
发布博客于 3 年前

C++学习10向上造型和多态性(1)

注意:本笔记来自于网易云课堂公开课内容class A{public: int I;      A():i(10){}};class B:public A{}; int main(){A a;B b;cout&lt;&lt;a.i&lt;&lt;” ”&lt;&lt;b.i&lt;&lt;endl;cout&lt;&lt;sizeof(a)&lt;&lt;” “&lt;&lt;sizeof(b)&a
原创
262阅读
0评论
0点赞
发布博客于 3 年前

C++学习9const和引用

const注意:本笔记来自网易云课堂学习第一个表示const在*后面,表示指针是const,那么指针不能++,但是指针指向的内存里的东西是可以变化的第二个const在*前面表示,指针指的内存是const的,指针指向的内存里的东西是不能变的。是说,不能通过这个指针变量去修改指针指向的内存的内容。 char * s=”hello”//这个虽然没有用const,但是这个字符串是const的。这段地址是不...
原创
48阅读
0评论
0点赞
发布博客于 3 年前

C++学习8内联函数

注意:本笔记来自网易云课堂学习内联函数inline function函数实现的时候需要pop call 堆栈等如果函数定义的时候前面加上inlineinline int f(int i){…}那么函数就不用之前的那么繁琐的过程了,如上图inline关键字在,h和,cpp中都要写,因为实际上函数是不存在的,只有inline的形式 inline函数的body只在.h文件中写。inline函数多次引用,...
原创
43阅读
0评论
0点赞
发布博客于 3 年前

C++学习7函数重载

注意:本笔记来自网易云课堂学习function overload函数名一样,但是参数类型或者参数个数不同。(但是函数类型不同不能构成overload的条件。不然编译器不知道调用的是哪个函数) 下面说的是默认参数值设置。在定义函数的时候可以默认一个参数值。如下:如果运行的时候,harpo只给了一个参数值2,那么默认m=4,j=5,可以缺省m,j !!default value只能是从右边缺省过来,不...
原创
52阅读
0评论
0点赞
发布博客于 3 年前

C++学习6继承

注意:本笔记来自网易云课堂学习 继承inheritance share:member datamember functioninterfaces 继承类可以继承原来类中的以上三个东西 比如一个student继承了personstudent是person的superset 基类超类父类(中文习惯这样说,但是英文中是parent) 派生类子类子类 class B:publicA{ }//B类是A类的子...
原创
54阅读
0评论
0点赞
发布博客于 3 年前

C++学习5访问限制、初始化、对象组合

访问限制Private只有成员函数可以访问注意:本笔记来自网易云课堂学习例子:#pragma onceclass A{public: A(); ~A(); void g(A*); void set(int);private: int i; int c;}; #include "A.h"#include&lt;iostream&gt;using namespace std;A::A(){}A::~A...
原创
78阅读
0评论
0点赞
发布博客于 3 年前

C++学习4构造函数和new delete

C++注意:本笔记来自网易云课堂学习构造函数 constructor 没有返回类型,名称和类的名称相同Class X{Public:X() } 构造函数可以有参数Class Tree{ }Tree(int a)Tree t(12) 析构函数~Tree(),在对象结束之前会调用析构函数 goto:jump;X a;Jump:…这样是错误的,因为jump跳过了初始化,但是会调用析构函数,但是没有构造函...
原创
62阅读
0评论
0点赞
发布博客于 3 年前

C++学习笔记3成员变量

注意:本笔记来自网易云课堂学习fields类中的成员变量,local variables本地变量,parameters函数参数成员变量在对象里面class A{private:     int i;public:     void f();}void A::f(){i=10;cout&lt;&lt;i&lt;&lt;endl;}#include&lt;iostream&gt;int main(){...
原创
51阅读
0评论
0点赞
发布博客于 3 年前

C++学习2

注意:本笔记来自网易云课堂学习时钟的程序框架应该是有5个源文件,4个类相关定义的文件,一个main
翻译
42阅读
0评论
0点赞
发布博客于 3 年前

C++学习-1

类的建立注意:本笔记来自网易云课堂学习C++新建类可以使用向导一个类要有.h(头文件)和,cpp文件(body) .h在你使用这个类的时候是要声明可以使用这个类的哪些接口函数等等.h文件里面只能放声明不能放定义,不然在不同的文件引用这个头文件的时候就会出现多次定义。声明:extern的变量函数原型(没有{ }的是声明,不然就是定义)是声明Class和struct的声明(这两个只有声明没有定义) #...
原创
66阅读
0评论
0点赞
发布博客于 3 年前