第一章 函数 极限 连续

本文深入探讨了函数的奇偶性,包括奇函数和偶函数的定义、判定方法以及它们的代数运算性质。通过证明,阐述了奇函数的代数和、偶函数的代数和仍保持原有的奇偶性,以及奇数个奇函数和偶数个奇函数相乘的性质。此外,还讨论了奇函数在原点处的性质和常见的奇偶函数实例。
摘要由CSDN通过智能技术生成

第一章 函数 极限 连续

第一节 函数

一. 函数的概念及常见函数

1. 函数概念

函数的两个基本要素:对应关系、定义域

判断两函数相等:从函数的两基本要素入手,即两函数的对应关系(表达式)、定义域相同

对 于 任 意 x D , 变 量 x 按 照 一 定 的 对 应 法 则 f 总 有 一 个 确 定 的 数 值 y 与 其 对 应 , 称 y 是 x 的 函 数 。 记 y = f ( x ) , x ∈ D 定 义 域 D , 值 域 R f = f ( D ) = { y ∣ y = f ( x ) , x ∈ D } 对于任意x D,变量x按照一定的对应法则f总有一个确定的数值y与其对应,称y是x的函数。 \\ 记y = f(x), x \in D \\ 定义域D,值域R_f=f(D)=\{y|y=f(x), x \in D\} xDxfyyxy=f(x),xDDRf=f(D)={ yy=f(x),xD}

二. 函数的性质(不含极限)

1. 单调性
1.2 单调性的判定
  1. 定义法
  2. 一阶导数法
2. 奇偶性
2.1 奇偶函数的定义
  1. f ( x ) f(x) f(x) D D D上为偶函数:
    $$

    1. 定义域D关于原点对称(若x \in D,则-x \in D) \
    2. f(-x) = f(x), x \in D
      $$
  2. f ( x ) f(x) f(x) D D D上为奇函数:
    $$

    1. 定义域D关于原点对称(若x \in D,则-x \in D)\
    2. f(-x) = -f(x), x \in D
      $$
2.2 奇偶函数的判定
  1. 定义法
  2. 运算性质
2.3 奇偶函数的运算性质
  1. 奇函数的图像关于坐标原点对称;偶函数的图像关于y轴对称。

  2. 奇函数的代数和仍为奇函数 [prove];偶函数的代数和仍为偶函数 [prove]。

    代数和:加减法

  3. 偶数个奇函数之积仍为偶函数 [prove];奇数个奇函数之积仍为奇函数 [prove]。

    由证明过程可知:无论偶数个/奇数个偶函数之积,结果仍为偶函数。

  4. 两个偶函数的积、商仍为偶函数 [prove];两个奇函数的积、商仍为偶函数 [prove]。

  5. 一个奇函数与一个偶函数的积、商为奇函数 [prove]。

  6. 奇函数 f ( x ) f(x) f(x)若在 x = 0 x=0 x=0处有定义,则 f ( 0 ) = 0 f(0)=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值