第一章 函数 极限 连续
第一节 函数
一. 函数的概念及常见函数
1. 函数概念
函数的两个基本要素:对应关系、定义域
判断两函数相等:从函数的两基本要素入手,即两函数的对应关系(表达式)、定义域相同
对 于 任 意 x D , 变 量 x 按 照 一 定 的 对 应 法 则 f 总 有 一 个 确 定 的 数 值 y 与 其 对 应 , 称 y 是 x 的 函 数 。 记 y = f ( x ) , x ∈ D 定 义 域 D , 值 域 R f = f ( D ) = { y ∣ y = f ( x ) , x ∈ D } 对于任意x D,变量x按照一定的对应法则f总有一个确定的数值y与其对应,称y是x的函数。 \\ 记y = f(x), x \in D \\ 定义域D,值域R_f=f(D)=\{y|y=f(x), x \in D\} 对于任意xD,变量x按照一定的对应法则f总有一个确定的数值y与其对应,称y是x的函数。记y=f(x),x∈D定义域D,值域Rf=f(D)={ y∣y=f(x),x∈D}
二. 函数的性质(不含极限)
1. 单调性
1.2 单调性的判定
- 定义法
- 一阶导数法
2. 奇偶性
2.1 奇偶函数的定义
-
f ( x ) f(x) f(x)在 D D D上为偶函数:
$$- 定义域D关于原点对称(若x \in D,则-x \in D) \
- f(-x) = f(x), x \in D
$$
-
f ( x ) f(x) f(x)在 D D D上为奇函数:
$$- 定义域D关于原点对称(若x \in D,则-x \in D)\
- f(-x) = -f(x), x \in D
$$
2.2 奇偶函数的判定
- 定义法
- 运算性质